Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398663

RESUMO

A simple strategy was adopted for the preparation of an antimicrobial natural rubber/graphene oxide (NR/GO) composite film modified through the use of zwitterionic polymer brushes. An NR/GO composite film with antibacterial properties was prepared using a water-based solution-casting method. The composited GO was dispersed uniformly in the NR matrix and compensated for mechanical loss in the process of modification. Based on the high bromination activity of α-H in the structure of cis-polyisoprene, the composite films were brominated on the surface through the use of N-bromosuccinimide (NBS) under the irradiation of a 40 W tungsten lamp. Polymerization was carried out on the brominated films using sulfobetaine methacrylate (SBMA) as a monomer via surface-initiated atom transfer radical polymerization (SI-ATRP). The NR/GO composite films modified using polymer brushes (PSBMAs) exhibited 99.99% antimicrobial activity for resistance to Escherichia coli and Staphylococcus aureus. A novel polymer modification strategy for NR composite materials was established effectively, and the enhanced antimicrobial properties expand the application prospects in the medical field.

2.
Plant J ; 113(3): 504-520, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36524729

RESUMO

Tapping panel dryness (TPD) is a century-old problem that has plagued the natural rubber production of Hevea brasiliensis. TPD may result from self-protective mechanisms of H. brasiliensis in response to stresses such as excessive hormone stimulation and mechanical wounding (bark tapping). It has been hypothesized that TPD impairs rubber biosynthesis; however, the underlying mechanisms remain poorly understood. In the present study, we firstly verified that TPD-affected rubber trees exhibited lower rubber biosynthesis activity and greater rubber molecular weight compared to healthy rubber trees. We then demonstrated that HbFPS1, a key gene of rubber biosynthesis, and its expression products were downregulated in the latex of TPD-affected rubber trees, as revealed by transcriptome sequencing and iTRAQ-based proteome analysis. We further discovered that the farnesyl diphosphate synthase HbFPS1 could be recruited to small rubber particles by HbSRPP1 through protein-protein interactions to catalyze farnesyl diphosphate (FPP) synthesis and facilitate rubber biosynthesis initiation. FPP content in the latex of TPD-affected rubber trees was significantly decreased with the downregulation of HbFPS1, ultimately resulting in abnormal development of rubber particles, decreased rubber biosynthesis activity, and increased rubber molecular weight. Upstream regulator assays indicated that a novel regulator, MYB2-like, may be an important regulator of downregulation of HbFPS1 in the latex of TPD-affected rubber trees. Our findings not only provide new directions for studying the molecular events involved in rubber biosynthesis and TPD syndrome and contribute to rubber management strategies, but also broaden our knowledge of plant isoprenoid metabolism and its regulatory networks.


Assuntos
Hevea , Hevea/genética , Hevea/metabolismo , Regulação para Baixo , Látex , Regulação da Expressão Gênica de Plantas/genética
3.
BMC Genomics ; 19(1): 5, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295704

RESUMO

BACKGROUND: Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and their various functions have been characterized in model plants, such as Arabidopsis thaliana (A. thaliana), Oryza sativa (rice), and other plant species. In the present study, genome-wide mining and expression analysis of ACBP genes was performed on Hevea brasiliensis (the para rubber tree), the most important latex-producing crop in the world. RESULTS: Six members of the H. brasiliensis ACBP family genes, designated HbACBP1-HbACBP6, were identified from the H. brasiliensis genome. They can be categorized into four classes with different amino acid sequences and domain structures based on the categorization of their A. thaliana counterparts. Phylogenetic analysis shows that the HbACBPs were clustered with those of other closely related species, such as Manihot esculenta, Ricinus communis, and Jatropha carcas, but were further from those of A. thaliana, a distantly related species. Expression analysis demonstrated that the HbACBP1 and HbACBP2 genes are more prominently expressed in H. brasiliensis latex, and their expression can be significantly enhanced by bark tapping (a mechanical wound) and jasmonic acid stimulation, whereas HbACBP3-HbACBP6 had almost the same expression patterns with relatively high levels in mature leaves and male flowers, but a markedly low abundance in the latex. HbACBP1 and HbACBP2 may have crucial roles in lipid and latex metabolism in laticifers, so their subcellular location was further investigated and the results indicated that HbACBP1 is a cytosol protein, whereas HbACBP2 is an endoplasmic reticulum-associated ACBP. CONCLUSIONS: In this study, the H. brasiliensis ACBP family genes were identified. Phylogenetic analyses of the HbABCPs indicate that there is a high conservation and evolutionary relationship between ACBPs in land plants. The HbACBPs are organ/tissue-specifically expressed and have different expression patterns in response to stimulation by bark tapping or ethrel/jasmonic acid. HbACBP1 and HbACBP2 are two important latex ACBPs that might be involved in the lipid and latex metabolism. The results may provide valuable information for further investigations into the biological functions of HbACBPs during latex metabolism and stress responses in H. brasiliensis.


Assuntos
Proteínas de Transporte/metabolismo , Hevea/metabolismo , Látex/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Expressão Gênica , Hevea/genética , Metabolismo dos Lipídeos , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Domínios Proteicos
4.
Mol Biol Rep ; 40(2): 1397-405, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23076531

RESUMO

Phosphorus (P) is an essential macronutrient for plant growth and development. P deficiency could affect rubber tree productivity seriously, and understanding the mechanism responses of the rubber tree under the P deficiency will be helpful to improving rubber tree productivity. The molecular mechanism by which the rubber trees respond to a P-deficiency is a complex network involving many processes. To identify the genes differentially expressed in that response, we constructed subtractive suppression hybridization libraries for roots of plants growing under deficient or sufficient conditions. We identified 94 up-regulated genes from the forward library and 45 down-regulated from the reverse library. These differentially expressed genes were categorized into eight groups representing functions in metabolism, transcription, signal transduction, protein synthesis, transport, stress responses, photosynthesis, and development. We also performed quantitative real-time PCR to investigate the expression profiles of eight randomly selected clones. Our results provide useful information for further study of the molecular mechanism for adaptations to a P-deficiency in this species. Further characterization and functional analysis of these differentially expressed genes will help us improve its phosphorus utilization and overall productivity.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hevea/genética , Fósforo/deficiência , Raízes de Plantas/genética , Adaptação Fisiológica , Biblioteca Gênica , Hevea/metabolismo , Anotação de Sequência Molecular , Raízes de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Estresse Fisiológico , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA