Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 2148-2156, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38217879

RESUMO

Constructing high-efficiency composite photocatalysts with enhanced charge transfer and a rapid surface catalytic reaction has recently received significant attention. Herein, a hydrochar-mediated NiFe2O4 nanosheet (C/NFO) composite was rationally constructed by a simple hydrothermal method. Intimate interface contacts and chemical interactions between hydrochar and NFO were formed. The prepared C/NFO samples exhibited remarkable visible-light-driven catalytic CO2 reduction properties under mild reaction conditions with Ru(bpy)32+ sensitization. As the optimized sample, 16%-C/NFO achieved a 4-fold enhancement of CO production (17.49 µmol/h) compared with that of pure NFO. The C/NFO samples demonstrated good activity and structural stability in the CO2 photoreduction system. The carbon source of CO derived from CO2 was verified through isotopic labeling experiments using 13CO2. In situ photoluminescence and electrochemical characterizations confirmed the role of electron transfer intermediates of C/NFO. The synergistic effect of the nanosheet-like structure of NFO, combined with the surface functional groups of hydrochar, facilitated an exceptionally high rate of charge transfer and exposed abundant active adsorption sites for CO2, thereby promoting the efficient separation of photogenerated charge carriers and enhancing photocatalytic activity for CO2 reduction. This study presents a promising strategy for the rational design of hydrochar coupled with transition metal compound catalysts for efficient CO2 photoreduction.

2.
J Hazard Mater ; 460: 132413, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666167

RESUMO

The increasing consumption of antibiotics and their subsequent release to wastewater or groundwater and ultimately to the water supply (or drinking water) has great concerns. This paper presents a visible light (VL) activated ferrate(VI) (FeVIO42-, Fe(VI)) system to degrade the selected antibiotic, trimethoprim (TMP), efficiently. An oxygen doped ZnIn2S4 nanosheet (O-ZIS) coupled with a black phosphorus (BP) heterostructure (O-ZIS/BP), is fabricated by a simple electrostatic self-assembly method. The O-ZIS/BP photocatalyst is comprehensively characterized by surface and analytical techniques, which show superior separation efficiency of the photoinduced charge carriers in the heterostructure. A VL-O-ZIS/BP-Fe(VI) system achieves more than 80% removal in 1.0 min and complete removal of TMP in 3.0 min. Comparatively, only ⁓7% and ⁓24% of TMP are degraded by O-ZIS/BP and Fe(VI) in 1.0 min, respectively. The degradation experiments using probe molecules of reactive species and electron paramagnetic resonance (EPR) measurements reveal involvement of superoxide (O2-•), hydroxyl radical (•OH), and iron(V)/iron (IV) (FeV/FeIV) species in the mechanism of TMP degradation. Oxidized products of TMP are identified and reaction pathways are given. Theoretical calculations predict the initial attack on the TMP molecule by the reactive species in the VL-O-ZIS/BP-Fe(VI) system. The activation of Fe(VI) by VL-heterostructure photocatalysts accelerates the degradation of antibiotics, demonstrating its potential for water depollution.

3.
Chemistry ; 28(72): e202201992, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36169660

RESUMO

CoFeOX nanosheets were synthesized by a facile coprecipitation and calcination method. The effect of calcination temperature on the crystal texture, morphology and surface areas of CoFeOX were fully explored. CoFeOX sample calcined at 600 °C (CoFeOX -600) showed superior catalytic performance for the reduction of CO2 under visible light. Compared with the pure Ru(bpy)3 2+ -sensitized CO2 reduction system, the CoFeOX -added system achieved 19-fold enhancement of CO production (45.7 µmol/h). The mixed valence state and nanosheet-like structure of CoFeOX cocatalyst support its ultra-high charge transfer and abundant CO2 active adsorption sites exposure, which promote the separation of photogenerated charges, and thus improve the photocatalytic CO2 reduction activity. Carbon source of CO from CO2 was verified by 13 CO2 isotopic labelling experiment. Repeated activity experiments confirmed the good stability of CoFeOX in the CO2 photoreduction system. This work would provide prospective insights into developing novel cost-effective, efficient, and durable non-precious metal cocatalysts to improve the efficiency of photocatalytic reduction of CO2 .

4.
Chemosphere ; 307(Pt 2): 135886, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35926741

RESUMO

The treatment of recalcitrant micropollutants in water remains challenging. Ferrate(VI) (FeVIO42-, Fe(VI)) has emerged as a green oxidant to oxidize organic molecules, however, its reactivity with recalcitrant micropollutants are sluggish. Our results demonstrate enhanced oxidation of carbamazepine (CBZ) by three types of visible light-responsive graphitic carbon nitride (g-C3N4) photocatalyst in absence and presence of ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. The g-C3N4 photocatalysts were prepared by thermal process using urea, thiourea, and melamine and were named as CN-U, CN-T, and CN-M, respectively. The degradation efficiency of CBZ, in both visible light-g-C3N4 and visible light-g-C3N4-FeVIO42- systems followed the order of CN-U > CN-T > CN-M. The mechanisms for this trend was elucidated by measuring physiochemical properties of the microstructures with various surface and analytical techniques. Results suggest the dominating role of specific surface area and surface delocalized electrons of microstructures in degrading CBZ. Crystallinity, morphology, and surface functional groups may not directly associate with CBZ degradation. The CN-U has higher specific surface area and surface delocalized electrons than CN-T and CN-M and therefore the highest degradation efficiency of CBZ. The surface electrons likely generated O2●- and 1O2 in the visible light-g-C3N4 system. The additional oxidants, FeV and FeIV in the visible light-g-C3N4- FeVIO42- system led to higher degradation efficiency than the visible light-g-C3N4 system. Results suggest that the surfaces of g-C3N4 may be prepared preferentially with high levels of delocalized electrons at the surface of microstructures to enhance degradation of micropollutants.


Assuntos
Elétrons , Luz , Carbamazepina , Catálise , Grafite , Ferro , Compostos de Nitrogênio , Oxidantes , Tioureia , Ureia , Água
5.
Environ Pollut ; 290: 117957, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425373

RESUMO

This review is intended to evaluate the use of ferrate (Fe(VI)), being a green coagulant, sustainable and reactive oxidant, to remove micro pollutants especially pharmaceutical pollutants in contaminated water. After a brief description of advanced oxidation processes, fundamental dimensions regarding the nature, reactivity, and chemistry of this oxidant are summarized. The degradation of contaminants by Fe(VI) involves several mechanisms and reactive agents which are critically evaluated. The efficiency and chemistry of Fe(VI) oxidation differs according to the reaction conditions and activation agent, such as soluble Fe(VI) processes, which involve Fe(VI), UV light, and electro-Fe(VI) oxidation. Fe(VI) application methods (including single dose, multiple doses, chitosan coating etc), and Fe(VI) with activating agents (including sulfite, thiosulfate, and UV) are also described to degrade the micro pollutants. Besides, application of Fe(VI) to remove pharmaceuticals in wastewater are intensely studied. Electrochemical prepared Fe(VI) has more wide application than wet oxidation method. Meanwhile, we elaborated Fe(VI) performance, limitations, and proposed innovative aspects to improve its stability, such as the generation of Fe(III), synergetic effects, nanopores entrapment, and nanopores capsules. This study provides conclusive direction for synergetic oxidative technique to degrade the micro pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Ferro , Cinética , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
6.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809488

RESUMO

Carbon nitride materials require high temperatures (>500 °C) for their preparation, which entails substantial energy consumption. Furthermore, the high reaction temperature limits the materials' processability and the control over their elemental composition. Therefore, alternative synthetic pathways that operate under milder conditions are still very much sought after. In this work, we prepared semiconductive carbon nitride (CN) polymers at low temperatures (300 °C) by carrying out the thermal condensation of triaminopyrimidine and acetoguanamine under a N2 atmosphere. These molecules are isomers: they display the same chemical formula but a different spatial distribution of their elements. X-ray photoelectron spectroscopy (XPS) experiments and electrochemical and photophysical characterization confirm that the initial spatial organization strongly determines the chemical composition and electronic structure of the materials, which, thanks to the preservation of functional groups in their surface, display excellent processability in liquid media.

7.
Nat Commun ; 11(1): 4701, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943629

RESUMO

A general synthesis of carbon nitride (CN) films with extended optical absorption, excellent charge separation under illumination, and outstanding performance as a photoanode in water-splitting photoelectrochemical cells is reported. To this end, we introduced a universal method to rapidly grow CN monomers directly from a hot saturated solution on various substrates. Upon calcination, a highly uniform carbon nitride layer with tuned structural and photophysical properties and in intimate contact with the substrate is obtained. Detailed photoelectrochemical and structural studies reveal good photoresponse up to 600 nm, excellent hole extraction efficiency (up to 62%) and strong adhesion of the CN layer to the substrate. The best CN photoanode demonstrates a benchmark-setting photocurrent density of 353 µA cm-2 (51% faradaic efficiency for oxygen), and external quantum yield value above 12% at 450 nm at 1.23 V versus RHE in an alkaline solution, as well as low onset potential and good stability.

8.
ACS Appl Mater Interfaces ; 11(32): 29139-29146, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31333008

RESUMO

Freestanding electrodes composed of 2D materials are highly attractive for many applications such as batteries, membranes, actuators, optical devices, and other energy-related devices owing to their low price, unique structure, high specific surface area, and excellent mechanical and electrical properties. Here, we report the facile large-scale fabrication of freestanding hierarchical carbon nitride/carbon electrodes (CN/C) by the in situ crystallization of CN precursors on conductive carbon paper, followed by thermal annealing. The resulting CN exhibits a vertically aligned morphology with a homogeneous layer distribution, improved crystallinity, and excellent contact with the carbon paper. The freestanding electrodes exhibit high electrical conductivity and good photoelectrochemical activity as anodes in water splitting photoelectrochemical cells. Furthermore, we show here as a proof-of-concept that the freestanding CN/C electrodes can be used as photoelectrocatalysts for the oxidative degradation of organic compounds in water, with enhanced activity compared to photocatalytic and electrocatalytic degradation, while the extracted electrons can be used for the simultaneous production of hydrogen at the cathode.

9.
Chem Commun (Camb) ; 54(18): 2272-2275, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29435527

RESUMO

As a unique class of functional materials, perovskite oxides have shown great opportunities in various energy storage and conversion applications. However, their performance for boosting photocatalytic CO2 reduction is seldom reported. Herein, we report a facile synthesis of coralline-like LaCoO3 perovskite materials and their use as highly efficient and stable cocatalysts for splitting CO2 into CO with visible light.

10.
Phys Chem Chem Phys ; 17(24): 16040-6, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26027655

RESUMO

The work reported herein was the facile preparation of uniform urchin-like NiCo2O4 microspheres, and their use as an efficient and stable cocatalyst for photocatalytic CO2 reduction catalysis. A combined solvothermal-calcination strategy was applied to synthesize the NiCo2O4 material that was systematically characterized by physical and chemical measurements (e.g. SEM, TEM, XRD, XPS, EDX, elemental mapping and N2 physisorption analysis). By cooperation with a visible light photosensitizer, the NiCo2O4 material effectively promoted the deoxygenative reduction of CO2 to CO by more than twenty times under mild reaction conditions. The carbon origin of CO evolution was validated by (13)CO2 isotope tracer experiments. Various reaction parameters were examined and optimized, and a possible reaction mechanism was proposed. Furthermore, the stability and reusability of NiCo2O4 cocatalysts were firmly confirmed.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Cobalto/química , Níquel/química , Óxidos/química , Processos Fotoquímicos , Catálise/efeitos da radiação , Microesferas , Oxirredução/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA