Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Front Nutr ; 11: 1410431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360273

RESUMO

Objective: Cerebral ischemia can cause mild damage to local brain nerves due to hypoxia and even lead to irreversible damage due to neuronal cell death. However, the underlying pathogenesis of this phenomenon remains unclear. This study utilized bioinformatics to explore the role of cuproptosis in cerebral ischemic disease and its associated biomarkers. Method: R software identified the overlap of cerebral ischemia and cuproptosis genes, analyzed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and explored hub genes. Expressions and localizations of hub genes in brain tissue, cells, and immune cells were analyzed, along with predictions of protein structures, miRNAs, and transcription factors. A network was constructed depicting hub gene co-expression with miRNAs and interactions with transcription factors. Ferredoxin 1 (FDX1) expression was determined using qRT-PCR. Results: Ten cuproptosis-related genes in cerebral ischemia were identified, with GO analysis revealing involvement in acetyl-CoA synthesis, metabolism, mitochondrial function, and iron-sulfur cluster binding. KEGG highlighted processes like the tricarboxylic acid cycle, pyruvate metabolism, and glycolysis/gluconeogenesis. Using the Human Protein Atlas, eight hub genes associated with cuproptosis were verified in brain tissues, hippocampus, and AF22 cells. Lipoyl(octanoyl) transferase 1 (LIPT1), was undetected, while others were found in mitochondria or both nucleus and mitochondria. These genes were differentially expressed in immune cells. FDX1, lipoic acid synthetase (LIAS), dihydrolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 component subunit alpha 1 (PDHA1), PDHB, and glutaminase (GLS) were predicted to target 111 miRNAs. PDHA1, FDX1, LIPT1, PDHB, LIAS, DLAT, GLS, and dihydrolipoamide dehydrogenase (DLD) were predicted to interact with 11, 10, 10, 9, 8, 7, 5, and 4 transcription factors, respectively. Finally, FDX1 expression was significantly upregulated in the hippocampus of ovariectomized rats with ischemia. Conclusion: This study revealed an association between cerebral ischemic disease and cuproptosis, identifying eight potential target genes. These findings offer new insights into potential biomarkers for the diagnosis, treatment, and prognosis of cerebral ischemia, and provide avenues for the exploration of new medical intervention targets.

2.
Ann Anat ; 257: 152341, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326767

RESUMO

BACKGROUND: Menopausal syndrome profoundly affects the physical and mental health of many women, drawing increasing attention from the medical community. However, its pathogenesis remains unclear. These symptoms are primarily driven by hormonal fluctuation. The hypothalamus, a key regulator of hormonal balance, potentially playing a critical role in the manifestation of menopausal syndrome. METHODS: We simulated the low-estrogen menopausal state using ovariectomized rats, confirmed the success of ovariectomy via histological analysis of the uterus and vagina, followed by estrogen treatment. TMT-labeled quantitative proteomics, RTqPCR, targeted proteomics and Western blotting were used to identify differentially expressed proteins and their functions in the hypothalamus under low-estrogen conditions. RESULTS: One-way ANOVA (p < 0.05) identified 295 differentially expressed proteins across the sham, ovariectomized and estrogen-treated groups. Post-ovariectomy, 103 differentially expressed proteins were upregulated and 93 were downregulated. Among these, 50 proteins were involved in hormones and neurotransmitters, immunity, metabolism and cardiovascular function. Notably, four proteins-Prkcg, Hsp90ab1, Ywhae, and Gad2-were identified as crucial regulators. CONCLUSIONS: This study elucidates the central molecular mechanism of menopausal syndrome through bioinformatics analysis of differentially expressed proteins in the hypothalamus under low-estrogen conditions, providing novel targets for the treatment of related symptoms.

3.
Theranostics ; 14(13): 5316-5335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267778

RESUMO

Background: Enhancing white adipose tissue (WAT) browning combats obesity. The RIIß subunit of cAMP-dependent protein kinase (PKA) is primarily expressed in the brain and adipose tissue. Deletion of the hypothalamic RIIß gene centrally induces WAT browning, yet the peripheral mechanisms mediating this process remain unexplored. Methods: This study investigates the mechanisms underlying WAT browning in RIIß-KO mice. Genetic approaches such as ß3-adrenergic receptors (ß3ARs) deletion and sympathetic denervation of WAT were utilized. Genome-wide transcriptomic sequencing and bioinformatic analysis were employed to identify potential mediators of WAT browning. siRNA assays were employed to knock down mTOR and lipin1 in vitro, while AAV-shRNAs were used for the same purpose in vivo. Results: We found that WAT browning substantially contributes to the lean and obesity-resistant phenotypes of RIIß-KO mice. The WAT browning can be dampened by ß3ARs deletion or WAT sympathetic denervation. We identified that adipocytic mTOR and lipin1 may act as mediators of the WAT browning. Inhibition of mTOR or lipin1 abrogates WAT browning and hinders the lean phenotype of RIIß-KO mice. In human subcutaneous white adipocytes and mouse white adipocytes, ß3AR stimulation can activate mTOR and causes lipin1 nuclear translocation; knockdown of mTOR and Lipin1 mitigates WAT browning-associated gene expression, impedes mitochondrial activity. Moreover, mTOR knockdown reduces lipin1 level and nuclear translocation, indicating that lipin1 may act downstream of mTOR. Additionally, in vivo knockdown of mTOR and Lipin1 diminished WAT browning and increased adiposity. Conclusions: The ß3AR-activated mTOR-lipin1 axis mediates WAT browning, offering new insights into the molecular basis of PKA-regulated WAT browning. These findings provide potential adipose target candidates for the development of drugs to treat obesity.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Camundongos Knockout , Fosfatidato Fosfatase , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Obesidade/metabolismo , Obesidade/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Receptores Adrenérgicos beta 3/metabolismo , Receptores Adrenérgicos beta 3/genética , Transdução de Sinais , Masculino , Camundongos Endogâmicos C57BL , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
5.
Sci Rep ; 14(1): 14553, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914792

RESUMO

Ischemic stroke (IS) is of increasing concern given the aging population and prevalence of unhealthy lifestyles, with older females exhibiting higher susceptibility. This study aimed to identify practical diagnostic markers, develop a diagnostic model for immunogenic cell death (ICD)-associated IS, and investigate alterations in the immune environment caused by hub genes. Differentially expressed genes associated with ICD in IS were identified based on weighted gene co-expression network analysis and the identification of significant modules. Subsequently, machine learning algorithms were employed to screened hub genes, which were further assessed using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis. A nomogram mode lwas then constructed for IS diagnosis, and its diagnostic value was assessed using a receiver operating characteristic curve. Finally, alterations in immune cell infiltration were assessed within patients with IS, and the pan-cancer expression patterns of hub genes were evaluated. Three hub genes associated with ICD (PDK4, CCL20, and FBL) were identified. The corresponding nomogram model for IS diagnosis could effectively identify older female patients with IS (area under the curve (AUC) = 0.9555). Overall, the three hub genes exhibit good diagnostic value (AUC > 0.8). CCL20 and FBL are significantly associated with the extent of immune cells infiltration. Moreover, a strong link exists between hub gene expression and pan-cancer prognosis. Cumulatively, these results indicate that ICD-related hub genes critically influence IS progression in older females, presenting novel diagnostic and therapeutic targets for personalized treatment.


Assuntos
Quimiocina CCL20 , Morte Celular Imunogênica , AVC Isquêmico , Humanos , Feminino , AVC Isquêmico/genética , AVC Isquêmico/imunologia , AVC Isquêmico/diagnóstico , Idoso , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Biomarcadores , Nomogramas , Redes Reguladoras de Genes , Aprendizado de Máquina , Perfilação da Expressão Gênica , Curva ROC , Idoso de 80 Anos ou mais
6.
Behav Brain Res ; 469: 115047, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38759799

RESUMO

Hyperalgesia occurs in the orofacial region of rats when estrogen levels are low, although the specific mechanism needs to be investigated further. Furthermore, oxidative stress plays an important role in the transmission of pain signals. This study aimed to explore the role of oxidative stress in orofacial hyperalgesia under low estrogen conditions. We firstly found an imbalance between oxidative and antioxidant capacity within the spinal trigeminal subnucleus caudalis (SP5C) of rats after ovariectomy (OVX), resulting in oxidative stress and then a decrease in the orofacial pain threshold. To investigate the mechanism by which oxidative stress occurs, we used virus as a tool to silence or overexpress the excitatory amino acid transporter 3 (EAAT3) gene. Further investigation revealed that the regulation of glutathione (GSH) and reactive oxygen species (ROS) can be achieved by regulating EAAT3, which in turn impacts the occurrence of oxidative stress. In summary, our findings suggest that reduced expression of EAAT3 within the SP5C of rats in the low estrogen state may decrease GSH content and increase ROS levels, resulting in oxidative stress and ultimately lead to orofacial hyperalgesia. This suggests that antioxidants could be a potential therapeutic direction for orofacial hyperalgesia under low estrogen conditions, though more research is needed to understand its mechanism.


Assuntos
Estrogênios , Transportador 3 de Aminoácido Excitatório , Dor Facial , Glutationa , Hiperalgesia , Ovariectomia , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Hiperalgesia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Feminino , Estrogênios/metabolismo , Estrogênios/farmacologia , Dor Facial/metabolismo , Glutationa/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo
7.
Heliyon ; 10(6): e27976, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510058

RESUMO

Perimenopausal syndrome (PMS) encompasses neuropsychiatric symptoms, such as hot flashes and depression, which are associated with alterations in the 5-HTergic neural pathway in the brain. However, the specific changes and mechanisms underlying these alterations remain unclear. In this study, ovariectomized mice were used to successfully establish a perimenopause model, and the changes in the expression of 5-HT and its receptors (5-HT1AR and 5-HT2AR) across 72 brain regions in these ovariectomized mice were assessed by immunohistochemistry. Although both 5-HT and 5-HT1AR were widely expressed throughout the brain, only a limited number of regions expressed 5-HT2AR. Notably, decreased expression of 5-HT was observed across almost all brain regions in the ovariectomy (OVX) group compared with the Sham group. Altered expression of both receptors was found within areas related to hot flashes (the preoptic area) or mood disorders (the amygdala). Additionally, reduced oestrogen receptor (ER)α/ß expression was detected in cells in the raphe nucleus (RN), an area known to regulate body temperature. Results showed that ERα/ß positively regulate the transcriptional activity of the enzymes TPH2/MAOA, which are involved in serotonin metabolism during perimenopause. This study revealed the changes in 5-HT neuropathways (5-HT, 5-HT1AR and 5-HT2AR) in perimenopausal mice, mainly in brain regions related to regulation of the body temperature, mood, sleep and memory. This study clarified that the expression of oestrogen receptor decreased in perimenopause, which regulated the transcription levels of TPH2 and MAOA, and ultimately led to the reduction of 5-HT content, providing a new target for clinical diagnosis and treatment of perimenopausal diseases.

8.
Ann Anat ; 250: 152132, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454827

RESUMO

BACKGROUND: Decreased estrogen levels can cause abnormal thermosensitivity of the preoptic area (POA) in the hypothalamus during menopause, which may cause hot flashes. Thermosensitive transient receptors (ThermoTRPs) affect the thermosensitivity of neurons. It is worth exploring whether ThermoTRPs change under low estrogen state and participate in the abnormal thermoregulation of POA. METHODS: Adult female Sprague-Dawley rats were randomly divided into sham operation (SHAM), ovariectomy (OVX) and estrogen treatment after ovariectomy (OVX+E) groups. Under 10 â„ƒ, 18 â„ƒ, 25 â„ƒ, 37 â„ƒ and 45 â„ƒ incubations, their skin temperature was monitored and the expression of TRPA1, TRPM8, TRPM2, and TRPV1 in POA were investigated. RESULTS: The skin temperature of ovariectomized rats changed faster and more dramatically under different incubation temperatures. The results at mRNA level show that only the expression of TRPM2 decreased in POA of OVX group compared with the other two groups at 25 â„ƒ, TRPA1 expression in POA of the three groups increased at 10 â„ƒ, TRPM8 increased at 10 â„ƒ and 18 â„ƒ, TRPV1 increased at 10 â„ƒ and 45 â„ƒ, while the expression of TRPM2 decreased at 10 â„ƒ and 18 â„ƒ and increased at 37 â„ƒ and 45 â„ƒ. In all these cases, the magnitudes of the changes were less in the OVX group relative to the other two groups. The further immunohistochemical and Western blot results of TRPM2 and the activated TRPM2 positive cells labeled by c-Fos were consistent with the results of mRNA level. CONCLUSIONS: The expression and thermosensitivity of TRPM2 in POA changed greatly under different incubation temperatures, but the changes in ovariectomized rats were less. This may be the key factor triggering thermoregulation dysfunction under low estrogen and may cause hot flashes.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Ratos , Feminino , Animais , Humanos , Área Pré-Óptica/metabolismo , Fogachos , Ratos Sprague-Dawley , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Estradiol , Hipotálamo/metabolismo , Menopausa , Estrogênios , Regulação da Temperatura Corporal , RNA Mensageiro/metabolismo , Ovariectomia
9.
Polymers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050244

RESUMO

Bonding is one of the main forms of composite bonding. In order to investigate the effect of low-temperature plasma surface treatment on the bonding properties of carbon fiber-reinforced epoxy resin composites (CF/EP), a single-lap joint of CF/EP was prepared. The surface of the CF/EP was treated with atmospheric pressure "low-temperature plasma spray" equipment, and the tensile shear strength, surface morphology, surface contact angle and surface chemical composition of the CF/EP before and after plasma treatment were characterized. Finally, the samples were treated with traditional sandblasting, compared and analyzed. The results show that the effect of low-temperature plasma surface treatment on CF/EP joints is better than that of traditional sandblasting treatment. After low-temperature plasma surface treatment, the tensile shear strength of the CF/EP single-lap joint increased by 119.59% at most, and the failure form of the joint changed from untreated interface failure to mixed failure dominated by cohesion failure. Plasma can etch the surface of composite materials, the mechanical interlock between the carbon fiber and glue is enhanced and the bonding performance of the composite is improved. In addition, after low-temperature plasma surface treatment, the introduction of a large number of oxygen-containing active groups such as C-O and C=O can increase the surface free energy, reduce the contact angle and improve the surface activity and wettability of the composites. However, too long a treatment time will lead to excessive plasma etching of carbon fibers, thus weakening the active effect of the oxygen-containing active groups on the surface of the composites, and the surface wettability is no longer improved, but the adhesive properties of CF/EP are reduced. This paper plays a guiding role in the bonding technology of composite materials.

10.
Adv Sci (Weinh) ; 10(5): e2205173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529950

RESUMO

The RIIß subunit of  cAMP-dependent protein kinase A (PKA) is expressed in the brain and adipose tissue. RIIß-knockout mice show leanness and increased UCP1 in brown adipose tissue. The authors have previously reported that RIIß reexpression in hypothalamic GABAergic neurons rescues the leanness. However, whether white adipose tissue (WAT) browning contributes to the leanness and whether RIIß-PKA in these neurons governs WAT browning are unknown. Here, this work reports that RIIß-KO mice exhibit a robust WAT browning. RIIß reexpression in dorsal median hypothalamic GABAergic neurons (DMH GABAergic neurons) abrogates WAT browning. Single-cell sequencing, transcriptome sequencing, and electrophysiological studies show increased GABAergic activity in DMH GABAergic neurons of RIIß-KO mice. Activation of DMH GABAergic neurons or inhibition of PKA in these neurons elicits WAT browning and thus lowers body weight. These findings reveal that RIIß-PKA in DMH GABAergic neurons regulates WAT browning. Targeting RIIß-PKA in DMH GABAergic neurons may offer a clinically useful way to promote WAT browning for treating obesity and other metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico , Hipotálamo , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios GABAérgicos/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Magreza/metabolismo
11.
Neural Regen Res ; 18(3): 485-491, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018151

RESUMO

Recent studies have proposed three lymphatic drainage systems in the brain, that is, the glymphatic system, the intramural periarterial drainage pathway, and meningeal lymphatic vessels, whose roles in various neurological diseases have been widely explored. The glymphatic system is a fluid drainage and waste clearance pathway that utilizes perivascular space and aquaporin-4 protein located in the astrocyte endfeet to provide a space for exchange of cerebrospinal fluid and interstitial fluid. The intramural periarterial drainage pathway drives the flow of interstitial fluid through the capillary basement membrane and the arterial tunica media. Meningeal lymphatic vessels within the dura mater are involved in the removal of cerebral macromolecules and immune responses. After ischemic stroke, impairment of these systems could lead to cerebral edema, accumulation of toxic factors, and activation of neuroinflammation, while restoration of their normal functions can improve neurological outcomes. In this review, we summarize the basic concepts of these drainage systems, including drainage routes, physiological functions, regulatory mechanisms, and detection technologies. We also focus on the roles of lymphatic drainage systems in brain injury after ischemic stroke, as well as recent advances in therapeutic strategies targeting these drainage systems. These findings provide information for potential novel strategies for treatment of stroke.

13.
Acta Neuropathol Commun ; 10(1): 187, 2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529767

RESUMO

Interstitial fluid (ISF) from brain drains along the basement membranes of capillaries and arteries as Intramural Periarterial Drainage (IPAD); failure of IPAD results in cerebral amyloid angiopathy (CAA). In this study, we test the hypothesis that IPAD fails after subarachnoid haemorrhage (SAH). The rat SAH model was established using endovascular perforation method. Fluorescence dyes with various molecular weights were injected into cisterna magna of rats, and the pattern of IPAD after SAH was detected using immunofluorescence staining, two-photon fluorescent microscope, transmission electron microscope and magnetic resonance imaging tracking techniques. Our results showed that fluorescence dyes entered the brain along a periarterial compartment and were cleared from brain along the basement membranes of the capillaries, with different patterns based on individual molecular weights. After SAH, there was significant impairment in the IPAD system: marked expansion of perivascular spaces, and ISF clearance rate was significantly decreased, associated with the apoptosis of endothelial cells, activation of astrocytes, over-expression of matrix metalloproteinase 9 and loss of collagen type IV. In conclusion, experimental SAH leads to a failure of IPAD, clinically significant for long term complications such as CAA, following SAH.


Assuntos
Angiopatia Amiloide Cerebral , Hemorragia Subaracnóidea , Animais , Ratos , Células Endoteliais/patologia , Angiopatia Amiloide Cerebral/patologia , Drenagem , Corantes
14.
Front Aging Neurosci ; 14: 993955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313017

RESUMO

During menopause, when estrogen levels are low, abnormalities in the hypothalamic preoptic area (POA) of the thermoregulatory center can cause hot flashes. However, the involved neural population has not been identified. Proteomics showed that under low estrogen, differentially expressed proteins in the hypothalamus were associated with glutamatergic and GABAergic synapses. RNAscope, Western blotting and qRT-PCR indicated that the number of glutamatergic neurons in the POA was decreased, while the number of GABAergic neurons was increased. Chemogenetics showed that the rat body temperature decreased slowly after glutamatergic neurons were activated and increased quickly after glutamatergic neurons were inhibited, while it increased quickly after GABAergic neurons were activated and decreased slowly after GABAergic neurons were inhibited. RNAscope, immunofluorescence, Western blotting and qRT-PCR further showed that glutamate decarboxylase (GAD) 1 expression in the POA was increased, while GAD2 expression in the POA was decreased; that thermosensitive transient receptor potential protein (ThermoTRP) M (TRPM) 2 expression in glutamatergic neurons was decreased, while TRPM8 expression in GABAergic neurons was increased; and that estrogen receptor (ER) α and ß expression in the POA was decreased, and ERα and ERß expressed in both glutamatergic and GABAergic neurons. Estrogen therapy corrected these abnormalities. In addition, CUT&Tag and Western blot after injection of agonists and inhibitors of ERs showed that ERα and ERß were both transcription factors in glutamatergic and GABAergic synapses. Mechanistically, during menopause, estrogen may regulate the transcription and expression of GADs and ThermoTRPs through ERs, impacting the number and function of glutamatergic and GABAergic neurons, resulting in unbalanced heat dissipation and production in the POA and ultimately triggering hot flashes.

15.
Neuro Endocrinol Lett ; 43(2): 88-98, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933616

RESUMO

OBJECTIVE: To investigate the effects of estrogen on the threshold and temperature of orofacial pain and explore the influence on the function of glutamate and GABA neurons in the orofacial pain temperature perception pathway by observing the expression of vesicular glutamate transporter 2 (Vglut2) and vesicular GABA transporter 1 (Vgat1). METHODS: A total of 24 adult female Sprague-Dawley rats were divided into three groups: sham operation (SHAM), ovariectomized (OVX) and ovariectomized plus estrogen intervention (OVX+E) (n = 8 per group). The threshold of mechanical pain of the orofacial region was assessed with von Frey filaments, and the temperature of the rat orofacial region was monitored by infrared thermography. Changes in the expression of Vglut2 and Vgat1 in glutamatergic and GABAergic neurons in the trigeminal ganglion (TG), spinal trigeminal nucleus (Sp5C), lateral parabrachial nucleus (LPB) and ventral posteromedial nucleus of the thalamus (VPM) were assessed by immunostaining and Western blotting. RESULTS: Under low-estrogen conditions, the mechanical pain threshold of the orofacial region of rats decreased significantly, and the temperature of the orofacial region increased significantly. The expression of Vglut2 and Vgat1 in the TG and Sp5C showed a downward trend, and the decline in Vgat1 was greater than that in Vglut2. Conversely, both proteins were upregulated in the LPB and VPM, and the magnitude of the changes in Vglut2 was greater than that in Vgat1. Estrogen therapy reversed these changes. CONCLUSION: Under low-estrogen conditions, the proportion of glutamate and GABA neurons in the orofacial pain and temperature sensation pathway changes, which leads to the imbalance of neurotransmission function and the enhancement of excitatory transmission of these two kinds of neurons and finally leads to a decrease in the orofacial pain threshold and an increase in temperature.


Assuntos
Dor Facial , Sensação , Animais , Feminino , Ratos , Estrogênios/farmacologia , Glutamatos , Ratos Sprague-Dawley , Temperatura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
16.
Ann Anat ; 241: 151886, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35032566

RESUMO

BACKGROUND: Menopausal symptoms can affect the physical and mental health of females and are often related to abnormal function of the hypothalamus. In this study, we evaluated changes in the hypothalamus transcriptome in ovariectomized mice to identify key mRNAs, and systematically elucidated the possible molecular mechanisms underlying the menopausal syndrome to provide a theoretical basis for clinical diagnosis and treatment. METHODS: Forty-six adult female C57BL/6 J mice were randomly divided into SHAM and OVX groups, 23 mice per group. Eight weeks after the procedure, differentially expressed genes (DEGs) in the hypothalamus were identified through RNA-sequencing. DEGs were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses. Key DEGs were then evaluated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical staining. RESULTS: Compared with SHAM group, 7295 genes were upregulated, and 8979 genes were downregulated in the hypothalamus of OVX mice with a fold change of 1.5 (log2 fold change ≥0.585). GO and KEGG analyses suggested these key genes were involved in thermoregulation, food intake, glucose and lipid metabolism, cardiovascular regulation, biological rhythm, and endocrine regulation. CONCLUSIONS: Differential expression of genes in the hypothalamus of OVX mice involved in thermoregulation, eating, sleeping, homeostasis, and endocrine regulation 8 weeks after ovariectomy suggest potential roles in the pathogenesis of climacteric syndrome.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Feminino , Hipotálamo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA
17.
Neuroendocrinology ; 112(7): 649-665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34592740

RESUMO

INTRODUCTION: Menopausal hot flashes are related to hypothalamic preoptic area (POA) dysfunction. Thermosensitive transient receptor potential channels (ThermoTRPs) are involved in temperature sensing and regulation of thermosensitive neurons (TSNs) in the POA. Whether ThermoTRP-TSNs in the POA, particularly the non-noxious thermoreceptor, transient receptor potential melastatin 2 (TRPM2), are involved in the occurrence of hot flashes is still unclear. METHODS: Twenty wild-type and 50 Trpm2-Cre adult female mice were randomly divided into sham (SHAM) and ovariectomy (OVX) groups. In the POA, ERα, ERß, GPR30, TRPA1, TRPM8, TRPM2, and TRPV1 expression was detected by Western blot or/and quantitative real-time polymerase chain reaction and the number of TSNs expressing TRPM2 (TRPM2-TSNs) by immunofluorescence. Before and after TRPM2-TSN activation/inhibition, back (BST) and tail skin temperature (TST) and the proportion of glutamatergic and GABAergic neurons among TRPM2-TSNs were recorded. RESULTS: Compared with SHAM, the expression of ERα, ERß, TRPM2, and TRPM8 in the POA of the OVX group decreased, with a significantly larger change range for TRPM2 than TRPM8. In addition, the number of TRPM2-TSNs showing TRPA1, TRPM8, and TRPV1 expression in the OVX group decreased, and the proportion of glutamatergic and GABAergic neurons in TRPM2-TSNs decreased and increased, respectively. Meanwhile, BST and TST increased. After activating or inhibiting TRPM2-TSNs, the proportions of glutamatergic and GABAergic neurons in TRPM2-TSNs changed, along with the BST and TST. CONCLUSION: In menopause, the abnormal quantity and function of TRPM2-TSNs in the POA is key for the development of hot flashes, characterized by an imbalance in heat dissipation and production due to the corresponding imbalance in glutamatergic and GABAergic neurons.


Assuntos
Canais de Cátion TRPM , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Fogachos/metabolismo , Menopausa , Camundongos , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Canais de Cátion TRPM/metabolismo
18.
Diabetes ; 71(2): 249-263, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732538

RESUMO

The increasing prevalence of obesity has resulted in demands for the development of new effective strategies for obesity treatment. Withaferin A (WA) shows a great potential for prevention of obesity by sensitizing leptin signaling in the hypothalamus. However, the mechanism underlying the weight- and adiposity-reducing effects of WA remains to be elucidated. In this study, we report that WA treatment induced white adipose tissue (WAT) browning, elevated energy expenditure, decreased respiratory exchange ratio, and prevented high-fat diet-induced obesity. The sympathetic chemical denervation dampened the WAT browning and also impeded the reduction of adiposity in WA-treated mice. WA markedly upregulated the levels of Prdm16 and FATP1 (Slc27a1) in the inguinal WAT (iWAT), and this was blocked by sympathetic denervation. Prdm16 or FATP1 knockdown in iWAT abrogated the WAT browning-inducing effects of WA and restored the weight gain and adiposity in WA-treated mice. Together, these findings suggest that WA induces WAT browning through the sympathetic nerve-adipose axis, and the adipocytic Prdm16-FATP1 pathway mediates the promotive effects of WA on white adipose browning.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Obesidade/prevenção & controle , Vitanolídeos/farmacologia , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/fisiologia , Animais , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Redox Biol ; 47: 102134, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600334

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disorder that is characterized by motor symptoms as a result of a loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), accompanied by chronic neuroinflammation, oxidative stress, formation of α-synuclein aggregates. Celastrol, a potent anti-inflammatory and anti-oxidative pentacyclic triterpene, has emerged as a neuroprotective agent. However, the mechanisms by which celastrol is neuroprotective in PD remain elusive. Here we show that celastrol protects against dopamine neuron loss, mitigates neuroinflammation, and relieves motor deficits in MPTP-induced PD mouse model and AAV-mediated human α-synuclein overexpression PD model. Whole-genome deep sequencing analysis revealed that Nrf2, NLRP3 and caspase-1 in SNc may be associated with the neuroprotective actions of celastrol in PD. By using multiple genetically modified mice (Nrf2-KO, NLRP3-KO and Caspase-1-KO), we identified that celastrol inhibits NLRP3 inflammasome activation, relieves motor deficits and nigrostriatal dopaminergic degeneration through Nrf2-NLRP3-caspase-1 pathway. Taken together, these findings suggest that Nrf2-NLRP3-caspase-1 axis may serve as a key target of celastrol in PD treatment, and highlight the favorable properties of celastrol for neuroprotection, making celastrol as a promising disease-modifying agent for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Caspase 1/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Triterpenos Pentacíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA