Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(51): 21044-21052, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38051505

RESUMO

Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.

2.
Chem Sci ; 14(39): 10892-10901, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37829014

RESUMO

Inspired by natural biological systems, chiral or handedness inversion by altering external and internal conditions to influence intermolecular interactions is an attractive topic for regulating chiral self-assembled materials. For coordination polymers, the regulation of their helical handedness remains little reported compared to polymers and supramolecules. In this work, we choose the chiral ligands R-pempH2 (pempH2 = (1-phenylethylamino)methylphosphonic acid) and R-XpempH2 (X = F, Cl, Br) as the second ligand, which can introduce C-H⋯π and C-H⋯X interactions, doped into the reaction system of the Tb(R-cyampH)3·3H2O (cyampH2 = (1-cyclohexylethylamino)methylphosphonic acid) coordination polymer, which itself can form a right-handed superhelix by van der Waals forces, and a series of superhelices R-1H-x, R-2F-x, R-3Cl-x, and R-4Br-x with different doping ratios x were obtained, whose handedness is related to the second ligand and its doping ratio, indicating the decisive role of interchain interactions of different strengths in the helical handedness. This study could provide a new pathway for the design and self-assembly of chiral materials with controllable handedness and help the further understanding of the mechanism of self-assembly of coordination polymers forming macroscopic helical systems.

3.
Chemistry ; 29(12): e202203454, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36445817

RESUMO

Photosensitive lanthanide-based single-molecule magnets (Ln-SMM) are very attractive for their potential applications in information storage, switching, and sensors. However, the light-driven structural transformation in Ln-SMMs hardly changes the coordination number of the lanthanide ion. Herein, for the first time it is reported that X-ray (λ=0.71073 Å) irradiation can break the coordination bond of Dy-OH2 in the three-dimensional (3D) metal-organic framework Dy2 (amp2 H2 )3 (H2 O)6 ⋅ 4H2 O (MDAF-5), in which the {Dy2 (OPO)2 } dimers are cross-linked by dianthracene-phosphonate ligands. The structural transformation proceeds in a single-crystal-to-single-crystal (SC-SC) fashion, forming the new phase Dy2 (amp2 H2 )3 (H2 O)4 ⋅ 4H2 O (MDAF-5-X). The phase transition is accompanied by a significant change in magnetic properties due to the alteration in coordination geometry of the DyIII ion from a distorted pentagonal bipyramid in MDAF-5 to a distorted octahedron in MDAF-5-X.

4.
Chem Commun (Camb) ; 58(60): 8372-8375, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35792066

RESUMO

A highly stable and porous MOF [Zr2(H4TPPP)(OH/F)2]·xH2O (1) containing a metal-free porphyrin-phosphonate ligand is reported. It shows high proton conductivity of 1.2 × 10-3 S·cm-1 at 25 °C and 95% RH, a photothermal effect over a wide spectral range from UV-vis to NIR, and photo-enhanced and switchable proton conductivity.

5.
Chem Commun (Camb) ; 56(81): 12090-12108, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-32959036

RESUMO

Metal phosphonates are an important class of metal-organic hybrid materials that exhibit versatile structures, intriguing functions and high water and thermal stability. Despite a large number of metal phosphonates achieved over the past few decades, those incorporating metalloligands are rather limited. The metalloligand approach can provide a unique opportunity in constructing homo- or mixed-metal coordination polymers with rationally immobilized functional moieties for various applications in gas storage and separation, heterogeneous catalysis, sensing and multifunctional materials. In this feature article, we shall introduce the current status of a special subclass of metal phosphonates, namely, metal-metalloligand phosphonates (MMPs), including synthetic strategies, crystal structures, and properties of those based on paddlewheel diruthenium, metallo-polyazamacrocycle, metalloporphyrin and metallo-tris-bipyridine ligands. Future challenges in this field are discussed.

6.
ACS Omega ; 4(15): 16543-16550, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31616834

RESUMO

The incorporation of phosphonate ligands into the cyclometalated iridium(III) complexes can not only tune their electronic and optical properties but also provide the possibility of anchoring these molecules on the semiconductor surfaces for further applications. Herein, we report the first examples of mononuclear cyclometallated iridium(III) complexes incorporating phosphonate ligands, namely, [Ir(ppy)2(HL1)]·0.5H2O (1), [Ir(ppy)2(HL2)]·0.5H2O (2), [Ir(dfppy)2(HL1)] (3), and [Ir(dfppy)2(HL2)]·3.5H2O (4) (ppy = 2-phenylpyridine, dfppy = 2-(2,4-difluorophenyl)pyridine, H2L1 = 2-pyridylphosphonic acid, H2L2 = 2-quinolinephosphonic acid). Luminescent spectra are studied both in solution and in the solid state, and significantly red-shifted broad emission bands are observed in complexes 2 and 4. The experimental and density functional theory (DFT) time-dependent-DFT calculation results indicate that the expansion of the aromatic conjugation length in the ancillary phosphonate ligands decreases the lowest unoccupied molecular orbital energy levels of the systems, originating from the triplet state associated with the ancillary ligand such as 3MLCT, 3LC, and 3LLCT charge-transfer transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA