Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 383-392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718591

RESUMO

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

2.
ACS Appl Mater Interfaces ; 13(37): 44440-44450, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499478

RESUMO

A phase junction fabricated by two crystalline phases of the same semiconductor is a promising photocatalyst with efficient charge transfer and separation. However, the weak light absorption and uncontrolled phase junction interface limit the generation and separation of photogenerated carriers. Herein, a two-dimensional (2D)/2D phase junction was prepared by growing orthorhombic WO3 ultrathin nanosheets on hexagonal WO3 nanosheets through a one-step hydrothermal method. The orthorhombic/hexagonal WO3 possesses large-area phase junction interfaces, rich reactive sites, and built-in electric field, which greatly accelerate the photogenerated charge separation and transfer. Thus, the orthorhombic/hexagonal WO3 displayed excellent photocatalytic hydrogen generation activity from water splitting under light irradiation (λ > 420 nm), which is 2.16 and 2.85 times those of orthorhombic and hexagonal WO3 phase components. Furthermore, Au nanoparticles (about 4.5 nm in diameter) were deposited on both orthorhombic and hexagonal WO3 nanosheets to form a plasmon-mediated phase junction. The hybrids exhibit prominent visible-light absorption and efficient charge transfer, leading to a further improved photocatalytic hydrogen generation activity. Further characterization studies demonstrate that superior photoactivity arises from the excellent visible-light-harvesting ability, appropriate band structure, and high-efficiency and multichannel transferring processes of photogenerated carriers.

3.
ACS Appl Mater Interfaces ; 12(34): 38554-38562, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846467

RESUMO

Au nanoingots, on which an Au nanosphere is accurately placed in an open Au shell, are synthesized through a controllable hydrothermal method. The prepared Au nanoingots exhibit an adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, and prominent photocatalytic and SERS performances. Au nanoingots exhibit two resonance peaks in the extinction spectrum, one (around 550 nm) is ascribed to electric dipole resonance coming from the central Au, and the other one (650-800 nm) is ascribed to the magnetic dipole resonance originating from the open Au shell. Numerical simulations verify that the intense electric and magnetic fields locate in the bowl-shaped nanogap between the Au nanosphere and shell, and they can be further optimized by changing the size of the outer Au shell. Au nanoingots with the largest shell have the strongest electric field because of large-area plasmon coupling, while Au nanoingots with the largest shell opening size have the strongest magnetic field. As a result, the structure-adjustable Au nanoingots show a high tunability and enhancement of catalytic reduction of p-nitrophenol and SERS detection of Rhodamine B. Specially, Au nanoingots with the largest shell size exhibit the highest catalytic activity and Raman signals at 532 nm excitation. However, Au nanoingots with the largest shell opening size have the highest photocatalytic activity with light irradiation (λ > 420 nm) and exhibit the best SERS performance at 785 nm excitation.

4.
Nanoscale ; 12(7): 4383-4392, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32025686

RESUMO

Plasmon coupling induced intense light absorption and near-field enhancement have vast potential for high-efficiency photocatalytic applications. Herein, (Au/AgAu)@CdS core-shell hybrids with strong multi-interfacial plasmon coupling were prepared through a convenient strategy for efficient photocatalytic hydrogen generation. Bimetallic Au/AgAu cores with an adjustable number of nanogaps (from one to four) were primarily synthesized by well-controlled multi-cycle galvanic replacement and overgrowth processes. Extinction tests and numerical simulations synergistically revealed that the multigap Au/AgAu hybrids possess a gap-dependent light absorption region and a local electric field owing to the multigap-induced multi-interfacial plasmon coupling. With these characteristics, hetero-photocatalysts prepared by further coating of CdS shells on multigap Au/AgAu cores exhibited a prominent gap-dependent photocatalytic hydrogen production activity from water splitting under light irradiation (λ > 420 nm). It is found that the hydrogen generation rates of multigap (Au/AgAu)@CdS have an exponential improvement compared with that of pure CdS as the number of nanogaps increases. In particular, four-gap (Au/AgAu)@CdS core-shell catalysts displayed the highest hydrogen generation rate, that is 96.1 and 47.2 times those of pure CdS and gapless Au@CdS core-shell hybrids. These improvements can be ascribed to the strong plasmon absorption and near-field enhancement induced by the multi-interfacial plasmon coupling, which can greatly improve the light-harvesting efficiency, offer more plasmonic energy, and boost the generation and separation of electron-hole pairs in the multigap catalysts.

5.
Adv Mater ; 30(12): e1706126, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29411431

RESUMO

High-quality pinhole-free perovskite film with optimal crystalline morphology is critical for achieving high-efficiency and high-stability perovskite solar cells (PSCs). In this study, a p-type π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b'] dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl) benzo[1',2'-c:4',5'-c'] dithiophene-4,8-dione))] (PBDB-T) is introduced into chlorobenzene to form a facile and effective template-agent during the anti-solvent process of perovskite film formation. The π-conjugated polymer PBDB-T is found to trigger a heterogeneous nucleation over the perovskite precursor film and passivate the trap states of the mixed perovskite film through the formation of Lewis adducts between lead and oxygen atom in PBDB-T. The p-type semiconducting and hydrophobic PBDB-T polymer fills in the perovskite grain boundaries to improve charge transfer for better conductivity and prevent moisture invasion into the perovskite active layers. Consequently, the PSCs with PBDB-T modified anti-solvent processing leads to a high-efficiency close to 20%, and the devices show excellent stability, retaining about 90% of the initial power conversion efficiency after 150 d storage in dry air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA