Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Cancer ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647131

RESUMO

Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.

2.
Se Pu ; 42(2): 164-175, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38374597

RESUMO

Metabolic associated fatty liver disease (MAFLD) is a common liver disease with a prevalence of up to 25%; it not only adversely affects human health but also aggravates the economic burden of society. An increasing number of studies have suggested that the occurrence of chronic noncommunicable diseases is affected by both environmental exposures and genetic factors. Research has also shown that environmental pollution may increase the risk of MAFLD and promote its occurrence and development. However, the relationship between these concepts, as well as the underlying exposure effects and mechanism, remains incompletely understood. Lipidomics, a branch of metabolomics that studies lipid disorders, can help researchers investigate abnormal lipid metabolites in various disease states. Lipidome-exposome wide association studies are a promising paradigm for investigating the health effects of cumulative environmental exposures on biological responses, and could provide new ideas for determining the associations between metabolic and lipid changes and disease risk caused by chemical-pollutant exposure. Hence, in this study, targeted exposomics and nontargeted lipidomics studies based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) were used to characterize exogenous chemical pollutants and endogenous lipid metabolites in the sera of patients with MAFLD and healthy subjects. The results demonstrated that fipronil sulfone, malathion dicarboxylic acid, and monocyclohexyl phthalate may be positively associated with the disease risk of patients diagnosed as simple fatty liver disease (hereafter referred to as MAFLD(0)). Moreover, fipronil sulfone, acesulfame potassium, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDA), 4-hydroxybenzophenone, and 3,5-di-tert-butyl-4-hydroxybenzoic acid (DBPOB) may be positively associated with the disease risk of patients diagnosed as fatty liver complicated by single or multiple metabolic disorders. Association analysis was carried out to explore the lipid metabolites induced by chemical residues. Triglyceride (TG) and diglyceride (DG) were significantly increased in MAFLD and MAFLD(0). The numbers of carbons of significantly changed DGs and TGs were mainly in the ranges of 32-40 and 35-60, respectively, and both were mainly characterized by changes in polyunsaturated lipids. Most of the lipid-effect markers were positively correlated with chemical residues and associated with increased disease risk. Our research provides a scientific basis for studies on the association and mechanism between serum chemical-pollutant residues and disease outcomes.


Assuntos
Poluentes Ambientais , Expossoma , Humanos , Poluentes Ambientais/efeitos adversos , Lipidômica , Medição de Risco , Espectrometria de Massas em Tandem
3.
Anal Chem ; 96(5): 2206-2216, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38253323

RESUMO

Gut microbiota, widely populating the mammalian gastrointestinal tract, plays an important role in regulating diverse pathophysiological processes by producing bioactive molecules. Extensive detection of these molecules contributes to probing microbiota function but is limited by insufficient identification of existing analytical methods. In this study, a systematic strategy was proposed to detect and annotate gut microbiota-related metabolites on a large scale. A pentafluorophenyl (PFP) column-based liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was first developed for high-coverage analysis of gut microbiota-related metabolites, which was verified to be stable and robust with a wide linearity range, high sensitivity, satisfactory recovery, and repeatability. Then, an informative database integrating 968 knowledge-based microbiota-related metabolites and 282 sample-sourced ones defined by germ-free (GF)/antibiotic-treated (ABX) models was constructed and subsequently used for targeted extraction and annotation in biological samples. Using pooled feces, plasma, and urine of mice for demonstration application, 672 microbiota-related metabolites were annotated, including 21% neglected by routine nontargeted peak detection. This strategy serves as a useful tool for the comprehensive capture of the intestinal flora metabolome, contributing to our deeper understanding of microbe-host interactions.


Assuntos
Microbioma Gastrointestinal , Metabolômica , Camundongos , Animais , Metabolômica/métodos , Metaboloma , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Mamíferos
4.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069368

RESUMO

Lung cancer is a malignant tumor with one of the highest morbidity and mortality rates in the world. Approximately 80-85% of lung cancer is diagnosed as non-small lung cancer (NSCLC), and its 5-year survival rate is only 21%. Cisplatin is a commonly used chemotherapy drug for the treatment of NSCLC. Its efficacy is often limited by the development of drug resistance after long-term treatment. Therefore, determining how to overcome cisplatin resistance, enhancing the sensitivity of cancer cells to cisplatin, and developing new therapeutic strategies are urgent clinical problems. Z-ligustilide is the main active ingredient of the Chinese medicine Angelica sinensis, and has anti-tumor activity. In the present study, we investigated the effect of the combination of Z-ligustilide and cisplatin (Z-ligustilide+cisplatin) on the resistance of cisplatin-resistant lung cancer cells and its mechanism of action. We found that Z-ligustilide+cisplatin decreased the cell viability, induced cell cycle arrest, and promoted the cell apoptosis of cisplatin-resistant lung cancer cells. Metabolomics combined with transcriptomics revealed that Z-ligustilide+cisplatin inhibited phospholipid synthesis by upregulating the expression of phospholipid phosphatase 1 (PLPP1). A further study showed that PLPP1 expression was positively correlated with good prognosis, whereas the knockdown of PLPP1 abolished the effects of Z-ligustilide+cisplatin on cell cycle and apoptosis. Specifically, Z-ligustilide+cisplatin inhibited the activation of protein kinase B (AKT) by reducing the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3). Z-ligustilide+cisplatin induced cell cycle arrest and promoted the cell apoptosis of cisplatin-resistant lung cancer cells by inhibiting PLPP1-mediated phospholipid synthesis. Our findings demonstrate that the combination of Z-Ligustilide and cisplatin is a promising approach to the chemotherapy of malignant tumors that are resistant to cisplatin.


Assuntos
Cisplatino , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , 4-Butirolactona/farmacologia , Fosfolipídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
5.
Front Immunol ; 14: 1168308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520533

RESUMO

Introduction: To control the COVID-19 pandemic, great efforts have been made to realize herd immunity by vaccination since 2020. Unfortunately, most of the vaccines against COVID-19 were approved in emergency without a full-cycle and comprehensive evaluation process as recommended to the previous vaccines. Metabolome has a close tie with the phenotype and can sensitively reflect the responses to stimuli, rendering metabolomic analysis have the potential to appraise and monitor vaccine effects authentically. Methods: In this study, a retrospective study was carried out for 330 Chinese volunteers receiving recommended two-dose CoronaVac, a vaccine approved in emergency in 2020. Venous blood was sampled before and after vaccination at 5 separate time points for all the recipients. Routine clinical laboratory analysis, metabolomic and lipidomic analysis data were collected. Results and discussion: It was found that the serum antibody-positive rate of this population was around 81.82%. Most of the laboratory parameters were slightly perturbated within the relevant reference intervals after vaccination. The metabolomic and lipidomic analyses showed that the metabolic shift after inoculation was mainly in the glycolysis, tricarboxylic acid cycle, amino acid metabolism, urea cycle, as well as microbe-related metabolism (bile acid metabolism, tryptophan metabolism and phenylalanine metabolism). Time-course metabolome changes were found in parallel with the progress of immunity establishment and peripheral immune cell counting fluctuation, proving metabolomics analysis was an applicable solution to evaluate immune effects complementary to traditional antibody detection. Taurocholic acid, lysophosphatidylcholine 16:0 sn-1, glutamic acid, and phenylalanine were defined as valuable metabolite markers to indicate the establishment of immunity after vaccination. Integrated with the traditional laboratory analysis, this study provided a feasible metabolomics-based solution to relatively comprehensively evaluate vaccines approved under emergency.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Estudos Retrospectivos , Pandemias , COVID-19/prevenção & controle , Metabolômica
6.
Anal Chem ; 94(24): 8561-8569, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670335

RESUMO

Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is the most popular platform for untargeted metabolomics studies, but compound annotation is a challenge. In this work, we developed a new LC-HRMS data-targeted extraction method called MetEx for metabolite annotation. MetEx contains the retention time (tR), MS1, and MS2 information of 30 620 metabolites from freely available spectral databases, including MoNA and KEGG. The tR values of 95.4% of the compounds in our database were calculated by the GNN-RT model. The MS2 spectra of 39.4% compounds were also predicted using CFM-ID. MetEx was initially examined on a mixture of 634 standards, considering chemical coverage and accurate metabolite assignment, and later applied to human plasma (NIST SRM 1950), human urine, HepG2 cells, mouse liver tissue, and mouse feces. MetEx correctly assigned 252 out of 253 standards detected in our instruments. The platform also provided 8.0-44.2% more compounds in the biological samples compared to XCMS, MS-DIAL, and MZmine 2. MetEx is implemented and visualized in R and freely available at http://www.metaboex.cn/MetEx.


Assuntos
Metabolômica , Plasma , Animais , Cromatografia Líquida/métodos , Bases de Dados Factuais , Espectrometria de Massas/métodos , Metabolômica/métodos , Metotrexato , Camundongos
7.
Nat Commun ; 13(1): 2187, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449157

RESUMO

Elevated de novo lipogenesis is considered to be a crucial factor in hepatocellular carcinoma (HCC) development. Herein, we identify ubiquitin-specific protease 22 (USP22) as a key regulator for de novo fatty acid synthesis, which directly interacts with deubiquitinates and stabilizes peroxisome proliferator-activated receptor gamma (PPARγ) through K48-linked deubiquitination, and in turn, this stabilization increases acetyl-CoA carboxylase (ACC) and ATP citrate lyase (ACLY) expressions. In addition, we find that USP22 promotes de novo fatty acid synthesis and contributes to HCC tumorigenesis, however, this tumorigenicity is suppressed by inhibiting the expression of PPARγ, ACLY, or ACC in in vivo tumorigenesis experiments. In HCC, high expression of USP22 positively correlates with PPARγ, ACLY or ACC expression, and associates with a poor prognosis. Taken together, we identify a USP22-regulated lipogenesis mechanism that involves the PPARγ-ACLY/ACC axis in HCC tumorigenesis and provide a rationale for therapeutic targeting of lipogenesis via USP22 inhibition.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , ATP Citrato (pro-S)-Liase , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica , Ácidos Graxos , Humanos , Lipidômica , Lipogênese/genética , Neoplasias Hepáticas/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
9.
Amino Acids ; 53(12): 1769-1777, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390414

RESUMO

Cancer cells often change their metabolism to support uncontrolled proliferation. Proline is the only proteogenic secondary amino acid that is abundant in the body. Recent studies have shown that proline metabolism plays an important role in metabolic reprogramming and affects the occurrence and development of cancer. Proline metabolism is related to ATP production, protein and nucleotide synthesis, and redox homeostasis in tumor cells. Proline can be synthesized by aldehyde dehydrogenase family 18 member A1 (ALDH18A1) and delta1-pyrroline-5-carboxylate reductase (PYCR), up-regulating ALDH18A1 and PYCR can promote the proliferation and invasion of cancer cells. As the main storage of proline, collagen can influence cancer cells proliferation, invasion, and metastasis. Its synthesis depends on the hydroxylation of proline catalyzed by prolyl 4-hydroxylases (P4Hs), which will affect the plasticity and metastasis of cancer cells. The degradation of proline occurs in the mitochondria and involves an oxidation step catalyzed by proline dehydrogenase/proline oxidase (PRODH/POX). Proline catabolism has a dual role in cancer, linking apoptosis with the survival and metastasis of cancer cells. In addition, it has been demonstrated that the regulation of proline metabolic enzymes at the genetic and post-translational levels is related to cancer. This article reviews the role of proline metabolic enzymes in cancer proliferation, apoptosis, metastasis, and development. Research on proline metabolism may provide a new strategy for cancer treatment.


Assuntos
Neoplasias/metabolismo , Prolina/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Humanos , Metástase Neoplásica/patologia , Neoplasias/patologia
10.
Adv Sci (Weinh) ; 7(22): 2001714, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240754

RESUMO

Diabetic retinopathy (DR) is the main cause of vision loss or blindness in working age adults worldwide. The lack of effective diagnostic biomarkers for DR leads to unsatisfactory curative treatments. To define potential metabolite biomarkers for DR diagnosis, a multiplatform-based metabolomics study is performed. In this study, a total of 905 subjects with diabetes without DR (NDR) and with DR at different clinical stages are recruited. Multiplatform metabolomics methods are used to characterize the serum metabolic profiles and to screen and validate the DR biomarkers. Based on the criteria p < 0.05 and false-discovery rate < 0.05, 348 and 290 metabolites are significantly associated with the pathogenesis of DR and early-stage DR, respectively. The biomarker panel consisting of 12-hydroxyeicosatetraenoic acid (12-HETE) and 2-piperidone exhibited better diagnostic performance than hemoglobin A1c (HbA1c) in differentiating DR from diabetes, with AUCs of 0.946 versus 0.691 and 0.928 versus 0.648 in the discovery and validation sets, respectively. In addition, this panel showed higher sensitivity in early-stage DR detection than HbA1c. In conclusion, this multiplatform-based metabolomics study comprehensively revealed the metabolic dysregulation associated with DR onset and progression. The defined biomarker panel can be used for detection of DR and early-stage DR.

11.
Anal Chem ; 92(23): 15497-15505, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175504

RESUMO

Exosomes, which are phospholipid bilayer nanovesicles, can transfer their content to recipient cells, playing a crucial role in intercellular communication. Exosomes have emerged as promising cancer biomarkers. However, a convenient, efficient, and economical approach for their isolation and comprehensive analysis is still technically challenging. In this study, aptamer-based immunoaffinitive magnetic composites, MagG@PEI@DSP@aptamer, were prepared to achieve the convenient capture, efficient enrichment, and mild release of exosomes. The constructed composites contain three segments: a PEI-modified magnetic graphene scaffold, an aptamer CD63 sequence, and a cleavable cross-linker in between. Notably, the binding capacity of MagG@PEI@DSP for an aptamer is 93 nmol/mg, and per milligram MagG@PEI@DSP@aptamer could capture 450 µg exosomes. Moreover, the released exosomes from MagG@PEI@DSP@aptamer composites were intact and well-dispersed. The prepared composites were then applied to profile the metabolite composition of exosomes secreted by breast cancer cells MCF-7, and the number of detected features was obviously increased when compared to that obtained by the traditional ultracentrifugation method (4528 vs 3710 and 3967 vs 3785 in the positive and negative ionization modes). Besides, the exosomes secreted by MCF-7 and normal breast cells MCF-10A were isolated from cell culture medium with MagG@PEI@DSP@aptamer, and their metabolic profiles were then comprehensively analyzed; in total, 119 metabolites in MCF-7 and MCF-10A were identified. Compared with exosomes from MCF-10A, 43 and 42 metabolites were upregulated and downregulated, respectively, in those from MCF-7. These data showed that the prepared MagG@PEI@DSP@aptamer composites can be used to effectively capture exosomes and further for metabolomics analysis.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Exossomos/metabolismo , Grafite/química , Imãs/química , Metabolômica/métodos , Polietilenoimina/química , Técnicas de Química Sintética , Humanos , Células MCF-7
12.
Nucleic Acids Res ; 44(13): 6423-33, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27131369

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to be critical biomarkers or therapeutic targets for human diseases. However, only a small number of lncRNAs were screened and characterized. Here, we identified 15 lncRNAs, which are associated with fatty liver disease. Among them, APOA4-AS is shown to be a concordant regulator of Apolipoprotein A-IV (APOA4) expression. APOA4-AS has a similar expression pattern with APOA4 gene. The expressions of APOA4-AS and APOA4 are both abnormally elevated in the liver of ob/ob mice and patients with fatty liver disease. Knockdown of APOA4-AS reduces APOA4 expression both in vitro and in vivo and leads to decreased levels of plasma triglyceride and total cholesterol in ob/ob mice. Mechanistically, APOA4-AS directly interacts with mRNA stabilizing protein HuR and stabilizes APOA4 mRNA. Deletion of HuR dramatically reduces both APOA4-AS and APOA4 transcripts. This study uncovers an anti-sense lncRNA (APOA4-AS), which is co-expressed with APOA4, and concordantly and specifically regulates APOA4 expression both in vitro and in vivo with the involvement of HuR.


Assuntos
Apolipoproteínas A/genética , Proteína Semelhante a ELAV 1/genética , Fígado Gorduroso/genética , RNA Longo não Codificante/biossíntese , Animais , Apolipoproteínas A/biossíntese , Colesterol/sangue , Proteína Semelhante a ELAV 1/biossíntese , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , RNA Longo não Codificante/genética , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA