Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 253: 126627, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278907

RESUMO

Manganese (Mn) contamination is a common environmental problem in the world and manganese oxidizing bacteria (MOB) play important roles in bioremediation of heavy metal and organic pollution. In this study, a novel MOB consortium AS containing core microbes of Sphingobacterium and Bacillus was acclimated from Mn-contaminated rivulet sediments. The MOB consortium AS presented good Mn(II) removal performance under 500-10,000 mg/L Mn(II), with Mn(II) removal capacities ranging from 481 to 3478 mg/L. In coexistence systems of Mn(II) and Fe(II), Ni(II), Cu(II), and Zn(II), the MOB consortium AS removed 98%, 91%, 99%, and 76% of Mn(II), respectively. Additionally, the MOB consortium AS could utilize multiple carbon sources (e.g., Chitosan, ß-Cyclodextrin, and Phenanthrene) to remove Mn(II), with Mn(II) removal efficiencies ranging from 11% to 97%. Meanwhile, XRD, XPS, FTIR, SEM, and EDS analyses reflected that biogenic Mn oxides (bio-MnOx-C) contained C, O, Mn (Mn(II) and Mn(IV)) and embodied in rhodochrosite and birnessite. The bio-MnOx-C exhibited second-order kinetic reaction for removal of dye, with corresponding decolorization capacities of 22.0 mg/g for methylene blue and 23.8 mg/g for crystal violet. In addition, bio-MnOx-C showed adsorption capacities of 159.0 mg/g for Cu(II), 130.7 mg/g for Zn(II), and 123.3 mg/g for Pb(II). Overall, this study illustrates consortium AS and bio-MnOx-C have great potentials in remediation of pollution caused by heavy metals and organic pollutants.


Assuntos
Corantes/química , Metais Pesados/química , Adsorção , Bactérias , Biodegradação Ambiental , Manganês/química , Compostos de Manganês , Azul de Metileno , Modelos Químicos , Oxirredução , Óxidos/química
2.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303553

RESUMO

At present, little is known about the RNA metabolism driven by the RNA degradosome in cyanobacteria. RNA helicase and enolase are the common components of the RNA degradosome in many bacteria. Here, we provide evidence that both enolase and the DEAD-box RNA helicase CrhB can interact with RNase E in Anabaena (Nostoc) sp. strain PCC 7120 (referred to here as PCC 7120). Furthermore, we found that the C-terminal domains of CrhB and AnaEno (enolase of PCC 7120) are required for the interaction, respectively. Moreover, their recognition motifs for AnaRne (RNase E of PCC 7120) turned out to be located in the N-terminal catalytic domain, which is obviously different from those identified previously in Proteobacteria We also demonstrated in enzyme activity assays that CrhB can induce AnaRne to degrade double-stranded RNA with a 5' tail. Furthermore, we investigated the localization of CrhB and AnaRne by green fluorescent protein (GFP) translation fusion in situ and found that they both localized in the center of the PCC 7120 cytoplasm. This localization pattern is also different from the membrane binding of RNase E and RhlB in Escherichia coli Together with the previous identification of polynucleotide phosphorylase (PNPase) in PCC 7120, our results show that there is an RNA degradosome-like complex with a different assembly mechanism in cyanobacteria.IMPORTANCE In all domains of life, RNA turnover is important for gene regulation and quality control. The process of RNA metabolism is regulated by many RNA-processing enzymes and assistant proteins, where these proteins usually exist as complexes. However, there is little known about the RNA metabolism, as well as about the RNA degradation complex. In the present study, we described an RNA degradosome-like complex in cyanobacteria and revealed an assembly mechanism different from that of E. coli Moreover, CrhB could help RNase E in Anabaena sp. strain PCC 7120 degrade double-stranded RNA with a 5' tail. In addition, CrhB and AnaRne have similar cytoplasm localizations, in contrast to the membrane localization in E. coli.


Assuntos
Anabaena/genética , Proteínas de Bactérias/genética , RNA Helicases DEAD-box/genética , Endorribonucleases/genética , Fosfopiruvato Hidratase/genética , Anabaena/enzimologia , Proteínas de Bactérias/metabolismo , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(8): 950-956, 2019 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-31511216

RESUMO

OBJECTIVE: To investigate the effects of different doses of propofol on myelin basic protein (MBP) synthesis and myelination of oligodendrocytes in neonatal SD rats. METHODS: A total of 57 neonatal SD rats (7 days old) were randomly divided into control group (n=13), vehicle (fat emulsion) group (n=5), and 25, 50 and 100 mg/kg propofol groups (n=13 in each group). Eight hours after a single intraperitoneal injection of propofol or the vehicle, the rats were examined for expressions of mbp mRNA, caspase-3 mRNA, cleaved caspase-3 and MBP in the brain tissues using qPCR and Western blotting. Immunofluorescence assay was used to detect the apoptosis of the oligodendrocytes at 8 h after the injection and the myelination of the corpus callosum and internal capsule at 24 h. RESULTS: Compared with the control group, the neonatal rats with propofol injections showed significantly down-regulated expressions of mbp mRNA and MBP protein in the brain tissue (P < 0.05). Propofol dose-dependently increased the transcription level of caspase-3 and the protein levels of cleaved caspase-3 at 8 h after the injection (P < 0.05). Propofol injection significantly increased the apoptosis of the oligodendrocytes, and the effect was significantly stronger in 50 and 100 mg/kg groups than in 25 mg/kg group (P < 0.05). At 24 h after propofol injection, myelin formation was significantly decreased in the corpus callosum of the neonatal rats in 100 mg/kg propofol group and in the internal capsule in 50 and 100 mg/kg groups (P < 0.05). CONCLUSIONS: In neonatal SD rats, propofol can dose-dependently promote oligodendrocyte apoptosis, decrease MBP expressions in the brain, and suppress myelin formation in the corpus callosum and the internal capsule.


Assuntos
Oligodendroglia , Animais , Proteína Básica da Mielina , Propofol , RNA Mensageiro , Ratos , Ratos Sprague-Dawley
4.
Future Oncol ; 15(27): 3135-3148, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31426680

RESUMO

Aim: To find accurate and effective biomarkers for diagnosis of non-small-cell lung cancer (NSCLC) patients. Materials & methods: We downloaded microarray datasets GSE19188, GSE33532, GSE101929 and GSE102286 from the database of Gene Expression Omnibus. We screened out differentially expressed genes (DEGs) and miRNAs (DEMs) with GEO2R. We also performed analyses for the enrichment of DEGs' and DEMs' function and pathway by several tools including database for annotation, visualization and integrated discovery, protein-protein interaction and Kaplan-Meier-plotter. Results: Total 913 DEGs were screened out, among which ten hub genes were discovered. All the hub genes were linked to the worsening overall survival of the NSCLC patients. Besides, 98 DEMs were screened out. MiR-9 and miR-520e were the most significantly regulated miRNAs. Conclusion: Our results could provide potential targets for the diagnosis and treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA