Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Angew Chem Int Ed Engl ; 63(19): e202402456, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38415324

RESUMO

The solid electrolyte interphase (SEI) membrane on the Li metal anode tends to breakdown and undergo reconstruction during operation, causing Li metal batteries to experience accelerated decay. Notably, an SEI membrane with self-healing characteristics can help considerably in stabilizing the Li-electrolyte interface; however, uniformly fixing the repairing agent onto the anode remains a challenging task. By leveraging the noteworthy film-forming attributes of bis(fluorosulfonyl)imide (FSI-) anions and the photopolymerization property of the vinyl group, the ionic liquid 1-vinyl-3-methylimidazolium bis(fluorosulfonyl)imide (VMI-FSI) was crosslinked with polyethylene oxide (PEO) in this study to form a self-healing film fixing FSI- groups as the repairing agent. When they encounter lithium metal, the FSI- groups are chemically decomposed into LiF & Li3N, which assist forming SEI membrane on lithium sheet and repairing SEI membrane in the cracks lacerated by lithium dendrite. Furthermore, the FSI- anions exchanged from film are electrochemically decomposed to generate inorganic salts to strengthen the SEI membrane. Benefiting from the self-healing behavior of the film, Li/LiCoO2 cells with the loading of 16.3 mg cm-2 exhibit the initial discharge capacities of 183.0 mAh ⋅ g-1 and are stably operated for 500 cycles with the retention rates of 81.4 % and the average coulombic efficiency of 99.97 %, operated between 3.0-4.5 V vs. Li+/Li. This study presents a new design approach for self-healing Li metal anodes and durable lithium metal battery.

2.
RSC Adv ; 13(48): 34194-34199, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020016

RESUMO

Ni-rich cathode materials suffer from rapid capacity fading caused by interface side reactions and bulk structure degradation. Previous studies show that Co is conducive to bulk structure stability and sulfate can react with the residual lithium (LiOH and Li2CO3) on the surface of Ni-rich cathode materials and form a uniform coating to suppress the side reactions between the cathode and electrolyte. Here, CoSO4 is utilized as a modifier for LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials. It reacts with the residual lithium on the surface of the NCM811 cathode to form Li-ion conductive Li2SO4 protective layers and Co doping simultaneously during the high-temperature sintering process, which can suppress the side reactions between the Ni-rich cathode and electrolyte and effectively prevent the structural transformation. As a result, the co-modified NCM811 cathode with 3 wt% CoSO4 exhibits an improved cycling performance of 81.1% capacity retention after 200 cycles at 1C and delivers an excellent rate performance at 5C of 187.4 mA h g-1, which is 10.2% higher than that of the pristine NCM811 cathode.

3.
RSC Adv ; 13(12): 8130-8135, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36922949

RESUMO

The comprehensive performance of the state-of-the-art solid-state electrolytes (SSEs) cannot match the requirements of commercial applications, and constructing an organic-inorganic composite electrolyte in situ on a porous electrode is an effective coping strategy. However, there are few studies focused on the influence of inorganic ceramics on the polymerization of multi-organic components. In this study, it was found that the addition of Li6.4La3Zr1.4Ta0.6O12 (LLZO) weakens the interaction between different polymers and makes organic and inorganic components contact directly in the solid electrolyte. These suppress the segregation of components in the in situ polymerized composite SSE, leading to a decrease in the polymer crystallization and improvement of electrolyte properties such as electrochemical stability window and mechanical properties. The composite solid-state electrolyte can be in situ constructed on different porous electrodes, which can establish close contact with active material particles, showing an ionic conductivity 4.4 × 10-5 S cm-1 at 25 °C, and afford the ternary cathode stability for 100 cycles.

4.
ACS Appl Mater Interfaces ; 13(46): 55072-55079, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761891

RESUMO

Surficial residual LiOH and/or Li2CO3 on Ni-rich cathodes arouse troubles for their practical applications, such as slurry gelling and durability degrading. To assure acceptable performance, the strategy of "washing and heat treatment" is generally utilized to remove them in industry, which is unavoidable to generate plenty of wastewater. In this work, we investigated the mechanism of slurry gelling caused by residual lithium on Ni-rich materials and then proposed a simple and efficient method to convert the detrimental residual lithium to the useful surface layer of LiF or LiBOB at 220 °C without water washing. As a result, the basicity of modified samples is lowered to 11.48 and 11.60 from 12.05 of the pristine, respectively. Owing to the beneficial effect of the surface layer, the treated samples deliver a discharge capacity of 189.5 and 187.9 mA h g-1 and retain 84.1 and 82.8% of the initial capacity under 1 C after 300 cycles, which is much better than that of the untreated material (57.8%). The comprehensive performances of the modified samples in this work are very close to those of the material treated with the industrial method, demonstrating the advantage of this strategy to further reduce the cost of material production.

5.
Front Genome Ed ; 3: 670529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713259

RESUMO

Recent advances in the development of CRISPR-Cas genome editing technologies have made it possible to perform targeted mutagenesis and precise gene replacement in crop plants. CRISPR-Cas9 and CRISPR-Cas12a are two main types of widely used genome editing systems. However, when CRISPR-Cas12a editing machinery is expressed from a transgene, some chromosomal targets encountered low editing frequency in important crops like maize and soybean. Here, we report efficient methods to directly generate genome edited lines by delivering Cas12a-gRNA ribonucleoprotein complex (RNP) to immature maize embryos through particle bombardment in an elite maize variety. Genome edited lines were obtained at ~7% frequency without any selection during regeneration via biolistic delivery of Cas12a RNP into immature embryos. Strikingly, the gene editing rate was increased to 60% on average and up to 100% in some experiments when the Cas12a RNP was co-delivered with a PMI selectable marker gene cassette and the induced callus cultures were selected with mannose. We also show that use of higher activity Cas12a mutants resulted in improved editing efficiency in more recalcitrant target sequence. The advances described here provide useful tools for genetic improvement of maize.

6.
ACS Appl Mater Interfaces ; 13(41): 49445-49452, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612635

RESUMO

In this work, a novel multilayer solid electrolyte interphase (SEI) is demonstrated to prolong the durability of a lithium-metal anode. It is in situ generated via reducing lithium bis(oxalate) borate (LiBOB) and fluoroethylene carbonate (FEC) in the electrolyte containing them as additives. The as-obtained SEI could be roughly divided into three layers: the polycarbonates surface membrane, LiF-rich middle layer, and B-containing polymer bottom film corresponding to their sequentially reductive potentials of 0.8, 1.55, and 1.8 V vs Li+/Li, respectively. This special structure prolongs the durability of lithium-metal anode since the elastic bottom layer could buffer the influence of volumetric variation and the LiF-rich middle layer could suppress Li dendrite growth and electrolyte permeation. Benefiting from the protection of this multilayer SEI, LiNi0.88Co0.09Al0.03O2/Li batteries with ultrahigh cathode loading of ∼4.5 mAh cm-2 stably operate for 200 cycles with the accumulated capacity of 750 mAh cm-2 and the coulombic efficiency of 99.78%. This approach provides a simple and efficient strategy to hover lithium-metal anode.

7.
ACS Appl Mater Interfaces ; 11(31): 27854-27861, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309824

RESUMO

The state-of-the-art electrolytes utilized in lithium-ion batteries are based on liquid carbonates combining a number of additives to fulfill the practical requirements including safety and low temperature. The plenty of components result in the quadruple times of probable radical groups involved into the interfacial reactions, rendering it too difficult to control the surface layer. This work tends to simplify the system with the fluorine-substituted ether as the functional cosolvent to expand the functions of basic electrolytes. The incorporation of this solvent enables the electrolyte to self-extinguish, reduces its freezing point to ∼75 °C lower, and assists in the formation of LiF-rich protective interlayers, resulting in the improvement of the rate capability, cryogenic performance, and cyclic stability for the LiNi1/3Co1/3Mn1/3O2 cathode. This novel design could significantly diminish the amount of necessary additives and possess the acceptable cost, which provides a probability to revitalize the development of liquid electrolytes.

8.
ACS Appl Mater Interfaces ; 10(13): 11305-11310, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547257

RESUMO

In this work, we propose a novel electrolyte additive, isophorone diisocyanate (IPDI), to construct the surface protective interlayer. This membrane is produced via nucleophilic addition between the IPDI's diisocyanate groups and the free-radical-onium ion oxidative intermediate of propylene carbonate (PC). In the electrolyte with IPDI added between 10-20 mM, LiNi0.5Co0.2Mn0.3O2 presents the excellent performance, demonstrating the relative wide operational window to form the optimal protective membrane. This protective membrane ameliorates the cyclic stability. Although all systems deliver ∼185 mAh g-1 under 1 C between 2.5-4.6 V (vs Li+/Li), the cells in the suitable electrolyte maintain 90.4% in the 50 cycles and 83.2% in the 200 cycles, whereas the control cells are seriously dropped to 73.4% and 69.8%. The cells in the electrolyte with the appropriate IPDI also present the good rate capability, attaining ∼143 mAh g-1 under 5 C, much higher than the cells in the control electrolyte(92.4 mAh g-1). The additive proposed in this work is helpful to augment the energy density of lithium ion battery and prolong the one-drive distance of electric vehicles.

9.
Mol Microbiol ; 74(2): 330-46, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19732344

RESUMO

Positive control (PC) mutants defining 20 residues of the quorum-sensing activator TraR were isolated that bind DNA but show defects in activating transcription from class I, class II or both types of promoters. These PC residues, located in both the N- and C-terminal regions, combine to form three patches, one on the top (II) and two near the DNA binding domain on both lateral faces of the dimer (I and III). Patches I and II, but not patch III, involve residues from both protomers and are essential for activation. TraR-mediated activation in Escherichia coli requires expression of the alpha-subunit of Agrobacterium (alpha(At)). We report that TraR also activates a class II promoter in E. coli when coexpressed with sigma(70)(At). Analyses in E. coli expressing alpha(At), sigma(70)(At) or both subunits indicate that most of the PC residues are important for interactions with alpha(At) and that these interactions are predominant for activation of class II promoters. Using the E. coli system we identified nine residues in the C-terminal domain of alpha(At) that are required for stimulating TraR-mediated activation. We conclude that N- and C-terminal residues of TraR from both protomers cooperate to define regions of the protein important for interactions with RNAP.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Percepção de Quorum , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Substituição de Aminoácidos , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fator sigma/genética , Fatores de Transcrição/genética , Ativação Transcricional
10.
J Biol Chem ; 282(27): 19979-91, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17475619

RESUMO

Conjugative transfer of Agrobacterium Ti plasmids is regulated by TraR, a quorum-sensing activator. Quorum dependence requires TraM, which binds to and inactivates TraR. In this study, we showed that TraR and TraM form a 151-kDa stable complex composed of two TraR and two TraM dimers both in vitro and in vivo. When interacted with TraR bound to tra box DNA, wild-type TraM formed a nucleoprotein complex of 77 kDa composed of one dimer of each protein and DNA. The complex converted to the 151-kDa species with concomitant release of DNA with a half-life of 1.6 h. TraR in the complex still retained tightly bound autoinducer. From these results, we conclude that TraM interacts in a two-step process with DNA-TraR to form a large, stable antiactivation complex. Mutagenesis identified residues of TraR important for interacting with TraM. These residues form two patches, possibly defining the binding interfaces. Consistent with this interpretation, comparison of the trypsin-digested polypeptides of TraR and of TraM with that of the TraR-TraM complex revealed that a tryptic site at position 177 of TraR around these patches is accessible on free TraR but is blocked by TraM in the complex. From these genetic and structural considerations, we constructed three-dimensional models of the complex that shed light on the mechanism of TraM-mediated inhibition of TraR and on TraM-mediated destabilization of the TraR-DNA complex.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Transcrição Gênica/fisiologia , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plasmídeos Indutores de Tumores em Plantas/química , Plasmídeos Indutores de Tumores em Plantas/genética , Plasmídeos Indutores de Tumores em Plantas/metabolismo , Ligação Proteica
11.
Mol Microbiol ; 53(5): 1471-85, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15387823

RESUMO

TraM, an 11.2 kDa antiactivator, modulates the acyl-homoserine lactone-mediated autoinduction of Ti plasmid conjugative transfer by interacting directly with TraR, the quorum-sensing transcriptional activator. Most antiactivators and antisigma factors examined to date act in dimer form. However, whether, and if so, how TraM dimerizes is unknown. Analyses based on a genetic assay using fusions of TraM to the lambda cI DNA binding domain, and biochemical assays using chemical crosslinking and gel filtration chromatography showed that TraM forms homodimers. Although SDS-PAGE studies suggested that the lone cysteine residue at position 71 was involved in interprotomer disulfide-bridging in TraM, altering Cys-71 to a serine did not significantly affect dimerization or the antiactivator activity of this mutant protein when expressed at wild-type levels in vivo. Analysis of N-terminal, C-terminal, and internal deletion mutants of TraM identified two regions of the protein involved in dimerization; one located within a segment between residues 20 and 50, and the other located to a segment between residues 67 and 96. Both regions are required for formation of fully stable dimers. Analysis of the activity of these deletion mutants in vivo, and their ability to bind TraR and to disrupt TraR-DNA complexes in vitro, suggests that while the internal segment of the protein is required for dimerization, determinants located at the far C-terminus and beginning at between residues 10 and 20 at the N-terminus play a role in TraR binding and antiactivator function. When co-expressed with lambda cI'::TraR fusions, wild-type TraM mediated quormone-independent dimerization of the transcriptional activator, suggesting that dimers of TraM can multimerize TraR.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Plasmídeos Indutores de Tumores em Plantas/genética , Estrutura Quaternária de Proteína , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética , Conjugação Genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Dissulfetos/química , Ditiotreitol/química , Plasmídeos Indutores de Tumores em Plantas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
J Biol Chem ; 279(39): 40844-51, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15237104

RESUMO

TraR, a quorum-sensing activator, induces transcription from its binding site, the tra-box, located upstream of Ti plasmid target promoters. TraR activated expression of a lacZ reporter in Escherichia coli only when RpoAAt from Agrobacterium tumefaciens was co-expressed. As assessed by gel retardation assays RpoAAt, but not RpoAEc, formed a ternary complex with TraR and a tra-box probe in vitro. TraR formed similar ternary complexes with alphaCTDAt but not with NTDAt, the C- and N-terminal segments of RpoAAt. As measured by surface plasmon resonance refractometry, TraR interacted directly with RpoAAt with an affinity about five times greater than that observed for its interaction with RpoAEc. The activator interacted with alphaCTDAt with kinetics and affinities similar to those of the full-sized -subunit. Positive control (PC) mutations at Asp-10 and Gly-123 of TraR did not affect DNA binding but greatly decreased the TraR-RpoAAt interaction. These two residues combine to form two patches on the activator, one of which may be involved in interaction with RpoA. When co-expressed, mutants of TraR with substitutions at Asp-10 complementing mutants with substitutions at Gly-123 for gene activation in an allele-specific manner. Co-expression studies with TraR and its PC mutants, and also with complementary PC alleles of TraR, coupled with three-dimensional structure are consistent with a hypothesis that both Asp-10/Gly-123 patches are required for activator function.


Assuntos
Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/química , Rhizobium/metabolismo , Agrobacterium tumefaciens/metabolismo , Alelos , Proteínas de Bactérias/metabolismo , DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Escherichia coli/metabolismo , Genes Dominantes , Genes Reporter , Teste de Complementação Genética , Cinética , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Ativação Transcricional
13.
J Biol Chem ; 278(15): 13173-82, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12569101

RESUMO

TraR, the quorum-sensing activator of the Agrobacterium tumefaciens Ti plasmid conjugation system, induces gene expression in response to its quormone, N-(3-oxooctanoyl)-L-homoserine lactone. Ligand binding results in dimerization of TraR and is required for its activity. Analysis of N- and C-terminal deletion mutants of TraR localized the quormone-binding domain to a region between residues 39 and 140 and the primary dimerization domain to a region between residues 119 and 156. The dominant-negative properties of these mutants predicted a second dimerization domain at the C terminus of the protein. Analysis of fusions of N-terminal fragments of TraR to lambda cI' confirmed the dimerization activity of these two domains. Fifteen single amino acid substitution mutants of TraR defective in dimerization were isolated. According to the analysis of these mutants, Asp-70 and Gly-113 are essential for quormone binding, whereas Ala-38 and Ala-105 are important, but not essential. Additional residues located within the N-terminal half of TraR, including three located in alpha-helix 9, contribute to dimerization, but are not required for ligand binding. These results and the recently reported crystal structure of TraR are consistent with and complement each other and together define some of the structural and functional relationships of this quorum-sensing activator.


Assuntos
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/fisiologia , Proteínas de Bactérias/genética , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Análise Mutacional de DNA , Ligantes , Modelos Moleculares , Mutagênese , Plasmídeos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA