Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 75(1): 139-147, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28111710

RESUMO

Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets for future studies to modulate atherosclerosis and restenosis after vascular interventional therapy.


Assuntos
Proliferação de Células , Quimiocina CXCL10/fisiologia , Sistema de Sinalização das MAP Quinases , Miócitos de Músculo Liso/fisiologia , Receptores CXCR3/fisiologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Músculo Liso Vascular/citologia , Ligação Proteica , Mapeamento de Interação de Proteínas
2.
BMC Cardiovasc Disord ; 12: 115, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23206536

RESUMO

BACKGROUND: In a previous in vitro study, we confirmed that small-caliber nanofibrous polyurethane (PU) vascular grafts have favorable mechanical properties and biocompatibility. In the present study, we examined the in vivo biocompatibility and stability of these grafts. METHODS: Forty-eight adult male beagle dogs were randomly divided into two groups receiving, respectively, polyurethane (PU) or polytetrafluoroethylene (PTFE) grafts (n = 24 animals / group). Each group was studied at 4, 8, 12, and 24 weeks after graft implantation. Blood flow was analyzed by color Doppler ultrasound and computed tomography angiography. Patency rates were judged by animal survival rates. Coverage with endothelial and smooth muscle cells was characterized by hematoxylin-eosin and immunohistological staining, and scanning electron microscopy (SEM). RESULTS: Patency rates were significantly higher in the PU group (p = 0.02 vs. PTFE group). During the first 8 weeks, endothelial cells gradually formed a continuous layer on the internal surface of PU grafts, whereas coverage of PTFE graft by endothelial cells was inhomogeneous. After 12 weeks, neointimal thickness remained constant in the PU group, while PTFE group showed neointimal hyperplasia. At 24 weeks, some anastomotic sites of PTFE grafts became stenotic (p = 0.013 vs. PU group). Immunohistological staining revealed a continuous coverage by endothelial cells and an orderly arrangement of smooth muscle cells on PU grafts. Further, SEM showed smooth internal surfaces in PU grafts without thrombus or obvious neointimal hyperplasia. CONCLUSIONS: Small-caliber nanofibrous PU vascular grafts facilitate the endothelialization process, prevent excessive neointimal hyperplasia, and improve patency rates.


Assuntos
Prótese Vascular , Nanofibras , Poliuretanos , Animais , Implante de Prótese Vascular , Cães , Endotélio Vascular/fisiologia , Masculino , Neointima/prevenção & controle , Politetrafluoretileno , Grau de Desobstrução Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA