RESUMO
Background: Lumbar intervertebral disc and paravertebral muscle degeneration are common causes of chronic low back pain (CLBP). However, the exact etiology of CLBP in young patients remains unclear. Identifying the risk factors for CLBP in young patients could expedite the development of effective preventive recommendations. Objectives: To identify the factors influencing the presence and severity of CLBP in young patients by analyzing the associations between the fat content of the paravertebral muscles, T2 value of the lumbar intervertebral disc (LIVD), and visual analog scale (VAS) score. Design: Data for 23 patients diagnosed with CLBP were compared to those of 20 healthy young individuals. Methods: The T2 values of the LIVD and fat content of the psoas major (PM), multifidus (MF), and erector spinae (ES) muscles for 23 young patients with CLBP and 20 healthy individuals were measured and compared using synthetic magnetic resonance imaging and proton density fat fraction analyses. Moreover, the factors (T2 values and fat content) associated with severe CLBP (assessed using the VAS score) were analyzed. Results: The fat content of the right MF and ES was higher in patients with CLBP than in healthy individuals (p < 0.05). The T2 values of each LIVD in the CLBP and control groups were not significantly different (p > 0.05). Moreover, the VAS scores did not correlate with the T2 values of the patients (p > 0.05). The fat content of the bilateral MF and ES muscles was positively associated with the VAS score in young patients with CLBP (left MF: r = 0.506, p = 0.01; right MF: r = 0.532, p = 0.01; left ES: r = 0.636, p < 0.01; and right ES: r = 0.716, p < 0.01). Conclusion: Degeneration of the MF and ES may contribute to CLBP in young patients. In addition, the severity of CLBP is positively correlated with the degree of fat infiltration in the MF and ES.
RESUMO
Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.3% to 99.9% among 71 PaLCuCNV isolates. Employing phylogenetic analysis, 71 PaLCuCNV sequences were clustered into five groups, with no significant correlation observed between genetic differentiation and either host species or geographical origin. Additionally, 13 recombination events across all PaLCuCNV isolates were identified. Genetic diversity analysis indicated the ongoing expansion and evolution of PaLCuCNV populations, supported by a neutral model. Moreover, significant genetic differentiation was observed among distinct viral populations, primarily attributed to genetic drift. Overall, our findings provide valuable insights into the detection, genetic variation, and evolutionary dynamics of PaLCuCNV.
RESUMO
OBJECTIVES: To investigate the correlation between optimal placement depth (OPD) and physical measurement parameters in preterm infants receiving placement of peripherally inserted central catheter (PICC) through the great saphenous vein (GSV), and to establish a predictive formula for OPD during the placement of PICC through the GSV. METHODS: A retrospective analysis was performed for the preterm infants who received the placement of PICC through the GSV in the Neonatal Intensive Care Unit of the Third Xiangya Hospital of Central South University from December 2022 to February 2024. According to the site of puncture [GSV of the knee joint (KJ) or the ankle joint (AJ)], they were divided into a GSV-KJ placement group (n=38) and a GSV-AJ placement group (n=33). The infants were measured in terms of body weight (BW), body length, the length of the upper and lower parts of the body, head circumference, and abdominal circumference at the time of placement. The Pearson correlation analysis was used to investigate the correlation between the above variables and OPD. A predictive formula was established for OPD in the placement of PICC via the GSV in preterm infants, and the predicted residual between the predicted depth and the ideal OPD was compared between the conventional predictive formula and the new predictive formula. RESULTS: The Pearson correlation analysis showed that PICC OPD was significantly positively correlated with BW, body length, the length of the upper and lower parts of the body, head circumference, and abdominal circumference in both the GSV-KJ placement group and GSV-AJ placement group (P<0.05), with the highest degree of correlation between OPD and BW. The univariate linear regression analysis showed a linear relationship between PICC OPD and BW in both groups. The predictive formulas for OPD were as follows: GSV-KJ PICC OPD (cm) = 13.1 + 2.7 × BW (kg) and GSV-AJ PICC OPD (cm) = 13.4 + 6.0 × BW (kg), and the new predictive formulas had a significantly lower predicted residual than the conventional predictive formula (P<0.05). CONCLUSIONS: OPD for PICC through the GSV is positively correlated with BW, and the prediction results of the new predictive formula based on BW are closer to the ideal OPD.
Assuntos
Cateterismo Periférico , Recém-Nascido Prematuro , Veia Safena , Humanos , Recém-Nascido , Estudos Retrospectivos , Masculino , Feminino , Cateterismo Periférico/métodos , Cateterismo Venoso Central/métodosRESUMO
Cytokinins (CKs) are one of the important classes of plant hormones essential for plant growth and development. TATA-box binding protein-associated factor 12b (TAF12b) is involved in CK signaling, but its molecular and biochemical mechanisms are not fully understood. In this study, TAF12b of Nicotiana benthamiana (NbTAF12b) was found to mediate the CK response by directly interacting with type B response regulators (B-RRs), positive regulators of CK signaling, and inhibiting their transcriptional activities. As a transcriptional co-factor, TAF12b specifically facilitated the proteasomal degradation of non-phosphorylated B-RRs by recruiting the KISS ME DEADLY family of F-box proteins. Such interactions between TAF12b and B-RRs also occur in other plant species. Genetic transformation experiments showed that overexpression of NbTAF12b attenuates the CK-hypersensitive phenotype conferred by NbRR1 overexpression. Taken together, these results suggest a conserved mechanism in which TAF12b negatively regulates CK responses by promoting 26S proteasome-mediated B-RR degradation in multiple plant species, providing novel insights into the regulatory network of CK signaling in plants.
RESUMO
Previous studies showed that serum amyloid A (SAA) and macrophages were associated with allergic airway inflammation. However, the interaction between SAA1 and macrophages in allergic airway inflammation remains to be further elucidated. In this study, the levels of SAA1 were measured in nasal tissues from patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), house dust mite (HDM)-treated BEAS-2B cells and the tissues of mice of HDM-induced allergic airway inflammation. Human monocytes-derived macrophages and mouse bone marrow-derived macrophages (BMDMs) were exposed to SAA1, and CCL17 and the other M1/M2-related factors were evaluated using RT-PCR and/or ELISA. To test the effects of SAA1-treated BMDMs on chemotaxis and differentiation of CD4+ T cells, number of migrated cells and the levels of Th1 and Th2 were measured using flow cytometry. SAA1 receptors were examined in BMDMs and lung macrophages of model mice. CD36 neutralizing antibody was applied to explore the mechanisms of SAA1 in regulating BMDMs using RT-PCR and/or ELISA. We found that SAA1 was expressed in epithelial cells, and was increased in the nasal tissues of patients with eosinophilic CRSwNP and HDM-treated BEAS-2B- cells as well as the bronchoalveolar lavage fluid and lung tissues of mice exposed to HDM. We also found that the level of CCL17 was increased in M2 macrophages, more CD4+ T cells were recruited and proportion of Th2 was increased after the treatment of SAA1. The treatment of CD36 neutralizing antibody decreased CCL17 level in SAA1-treated M2 BMDMs. In summary, our results showed that SAA1 was increased in allergic airway inflammation, and the administration of SAA1 upregulated the expression of CCL17 in M2 macrophages via CD36 and promoted the chemotaxis of CD4+ T cells and differentiation of Th2. It may provide a new therapeutic strategy that could mediate allergic airway inflammation via suppressing SAA1 to reduce recruitment of CD4+ T cells and activation of Th2.
Assuntos
Antígenos CD36 , Quimiocina CCL17 , Macrófagos , Pyroglyphidae , Proteína Amiloide A Sérica , Sinusite , Animais , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Humanos , Macrófagos/imunologia , Quimiocina CCL17/metabolismo , Camundongos , Pyroglyphidae/imunologia , Antígenos CD36/metabolismo , Antígenos CD36/genética , Sinusite/imunologia , Feminino , Masculino , Pólipos Nasais/imunologia , Transdução de Sinais , Células Th2/imunologia , Camundongos Endogâmicos BALB C , Linhagem Celular , Pessoa de Meia-Idade , Adulto , Rinite/imunologia , Hipersensibilidade Respiratória/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
Introduction: Transformation to SCLC is a resistance mechanism to tyrosine kinase inhibitor in EGFR-mutated lung adenocarcinoma (LUAD). Nevertheless, the clinical and molecular features of SCLC transformation in LUAD with leptomeningeal metastases (LM) are scarce. Methods: We retrospectively collected 237 patients with NSCLC who underwent lumbar puncture owing to suggestion of LM. All SCLC transformation in cerebrospinal fluid (CSF) was confirmed by two experienced pathologists using cytologic evaluation. CSF circulating tumor DNA (ctDNA) was tested by next-generation sequencing. Results: Tumor cells in CSF samples were found in 111 patients (111 of 237, 46.8%), and eight cases (eight of 111, 7.2%) were identified as having SCLC cells in CSF. Seven patients carried the EGFR mutation, including four patients with EGFR exon 19 deletion and three patients with EGFR exon 21 L858R mutation. Another patient harbored ERBB2 insertion. Seven of these patients were resistant to targeted therapy. CSF ctDNA analysis reported that TP53 and RB1 mutations were common. The median time from the diagnosis of advanced NSCLC to SCLC transformation found in CSF was 9.7 months (95% confidence interval [CI]: 4.0-17.5 mo). The median overall survival since the initial diagnosis of metastatic NSCLC was 15.3 months (95% CI: 1.2-29.4 mo). The median overall survival after SCLC transformation detected in CSF was 5.0 months (95% CI: 4.0-5.9 mo). Conclusions: SCLC transformation may be revealed in CSF by both cytologic evaluation and ctDNA, not just in tissue that underwent rebiopsy. SCLC transformation of CSF is informative for resistance mechanism in patients with LUAD with LM on tyrosine kinase inhibitor progression, which was associated with poor survival.
RESUMO
Background: Low-density neutrophils are heterogeneous immune cells with immunosuppressive (such as polymorphonuclear myeloid-derived suppressor cells [PMN-MDSC]) or pro-inflammatory (such as low-density granulocytes [LDG]) properties that have been well described in multiple cancers and immune diseases. However, its role in allergic rhinitis (AR) is still unclear. Methods: In the present study, we defined low-density neutrophils as CD14-CD11B+CD15+LOX-1+ (LOX-1+ neutrophils), and their levels in the peripheral blood (PB) were evaluated and compared between patients with AR and healthy donors using flow cytometric analysis. LOX-1 expression on polymorphonuclear neutrophils was identified. Carboxyfluorescein succinimidyl ester (CFSE)-stained CD3+ T cells were cultured alone or with LOX-1+ neutrophils, T cell proliferation was assessed using flow cytometry, and pro-inflammatory cytokines in the supernatants were detected using enzyme-linked immunosorbent assay (ELISA). Clinicopathological analyses were performed to gain a thorough understanding of LOX-1+ neutrophils. Results: We determined that LOX-1+ neutrophils were significantly increased in the PB of patients with AR, and LOX-1 expression in neutrophils from patients with AR was elevated. Interestingly, LOX-1+ neutrophils derived from patients with AR, unlike PMN-MDSC, promoted T cell proliferation and pro-inflammatory cytokine production. Moreover, clinicopathological analysis revealed that there was no any relation between circulating LOX-1+ neutrophil levels and the levels of IgE, age and sex. Conclusion: These findings indicate that elevated circulating LOX-1+ neutrophils play a pro-inflammatory role in AR.
RESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive motoneuron degeneration, and effective clinical treatments are lacking. In this study, we evaluated whether intranasal delivery of mesenchymal stem cell-derived small extracellular vesicles (sEVs) is a strategy for ALS therapy using SOD1G93A mice. In vivo tracing showed that intranasally-delivered sEVs entered the central nervous system and were extensively taken up by spinal neurons and some microglia. SOD1G93A mice that intranasally received sEV administration showed significant improvements in motor performances and survival time. After sEV administration, pathological changes, including spinal motoneuron death and synaptic denervation, axon demyelination, neuromuscular junction degeneration and electrophysiological defects, and mitochondrial vacuolization were remarkably alleviated. sEV administration attenuated the elevation of proinflammatory cytokines and glial responses. Proteomics and transcriptomics analysis revealed upregulation of the complement and coagulation cascade and NF-ĸB signaling pathway in SOD1G93A mouse spinal cords, which was significantly inhibited by sEV administration. The changes were further confirmed by detecting C1q and NF-ĸB expression using Western blots. In conclusion, intranasal administration of sEVs effectively delays the progression of ALS by inhibiting neuroinflammation and overactivation of the complement and coagulation cascades and NF-ĸB signaling pathway and is a potential option for ALS therapy.
Assuntos
Esclerose Lateral Amiotrófica , Vesículas Extracelulares , NF-kappa B , Transdução de Sinais , Animais , Masculino , Camundongos , Administração Intranasal , Esclerose Lateral Amiotrófica/metabolismo , Coagulação Sanguínea , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , NF-kappa B/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismoRESUMO
BACKGROUND: To provide a preoperative prediction model for lymph node metastasis in pancreatic cancer patients and provide molecular information of key radiomic features. METHODS: Two cohorts comprising 151 and 54 pancreatic cancer patients were included in the analysis. Radiomic features from the tumor region of interests were extracted by using PyRadiomics software. We used a framework that incorporated 10 machine learning algorithms and generated 77 combinations to construct radiomics-based models for lymph node metastasis prediction. Weighted gene coexpression network analysis (WGCNA) was subsequently performed to determine the relationships between gene expression levels and radiomic features. Molecular pathways enrichment analysis was performed to uncover the underlying molecular features. RESULTS: Patients in the in-house cohort (mean age, 61.3 years ± 9.6 [SD]; 91 men [60%]) were separated into training (n = 105, 70%) and validation (n = 46, 30%) cohorts. A total of 1,239 features were extracted and subjected to machine learning algorithms. The 77 radiomic models showed moderate performance for predicting lymph node metastasis, and the combination of the StepGBM and Enet algorithms had the best performance in the training (AUC = 0.84, 95% CI = 0.77-0.91) and validation (AUC = 0.85, 95% CI = 0.73-0.98) cohorts. We determined that 15 features were core variables for lymph node metastasis. Proliferation-related processes may respond to the main molecular alterations underlying these features. CONCLUSIONS: Machine learning-based radiomics could predict the status of lymph node metastasis in pancreatic cancer, which is associated with proliferation-related alterations.
Assuntos
Metástase Linfática , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Pessoa de Meia-Idade , Masculino , Metástase Linfática/patologia , Feminino , Genômica , Aprendizado de Máquina , Anotação de Sequência Molecular , Regulação Neoplásica da Expressão Gênica , Estudos de Coortes , Idoso , Algoritmos , Redes Reguladoras de Genes , Curva ROC , Reprodutibilidade dos Testes , RadiômicaRESUMO
Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.
RESUMO
The effects of ultraviolet (UV) radiation on brain function have previously been investigated; however, the specific neurotransmitter-mediated mechanisms responsible for UV radiation-induced neurobehavioral changes remain elusive. In this study, we aimed to explore the mechanisms underlying UV radiation-induced neurobehavioral changes. In a mouse model, we observed that UV irradiation of the skin induces deficits in hippocampal memory, synaptic plasticity, and adult neurogenesis, as well as increased dopamine levels in the skin, adrenal glands, and brain. Chronic UV exposure altered the expression of genes involved in dopaminergic neuron differentiation. Furthermore, chronic peripheral dopamine treatments resulted in memory deficits. Systemic administration of a dopamine D1/D5 receptor antagonist reversed changes in memory, synaptic plasticity, adult neurogenesis, and gene expression in UV-irradiated mice. Our findings provide converging evidence that chronic UV exposure alters dopamine levels in the central nervous system and peripheral organs, including the skin, which may underlie the observed neurobehavioral shifts, such as hippocampal memory deficits and impaired neurogenesis. This study underscores the importance of protection from UV exposure and introduces the potential of pharmacological approaches targeting dopamine receptors to counteract the adverse neurological impacts of UV exposure.
Assuntos
Dopamina , Transtornos da Memória , Raios Ultravioleta , Animais , Dopamina/metabolismo , Raios Ultravioleta/efeitos adversos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Masculino , Neurogênese/efeitos da radiação , Plasticidade Neuronal/efeitos da radiação , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Pele/metabolismo , Pele/efeitos da radiação , Transdução de Sinais , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos da radiaçãoRESUMO
UV irradiation of the human skin downregulates lipid synthesis and adipokine production in subcutaneous fat. Recent evidence has suggested that UV exposure limits body weight gain in mouse models of obesity. However, the relationship between norepinephrine and UV irradiation has not been previously reported. Chronic UV exposure stimulated food intake but prevented body weight gain. Leptin, an appetite-suppressing hormone, was significantly reduced in the serum of the UV-irradiated mice. In contrast, UV irradiation induced browning of subcutaneous white adipose tissues without increasing physical activity. Notably, UV irradiation significantly increased norepinephrine levels, and the inhibition of norepinephrine production reversed the effects of chronic UV irradiation on food intake and body weight gain. In conclusion, chronic UV irradiation induces norepinephrine release, resulting in the stimulation of food intake due to the downregulation of leptin levels, but it prevents weight gain by inducing the browning process and elevating energy expenditure.
Assuntos
Apetite , Leptina , Norepinefrina , Raios Ultravioleta , Regulação para Cima , Aumento de Peso , Animais , Camundongos , Aumento de Peso/efeitos da radiação , Norepinefrina/metabolismo , Norepinefrina/sangue , Raios Ultravioleta/efeitos adversos , Leptina/sangue , Leptina/metabolismo , Regulação para Cima/efeitos da radiação , Apetite/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Humanos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos da radiação , Ingestão de Alimentos/fisiologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos da radiaçãoRESUMO
The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.
Assuntos
Sistema A de Transporte de Aminoácidos , Metiltransferases , Metilação de RNA , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Nus , Prognóstico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Metilação de RNA/genéticaRESUMO
Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.
Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Neutrófilos , Fator de Transcrição STAT3 , Células Th17 , Células Th17/imunologia , Humanos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neutrófilos/imunologia , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Interleucina-17/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células Cultivadas , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Asma/imunologia , Asma/terapia , Masculino , Transdução de Sinais , Feminino , Modelos Animais de DoençasRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY: This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS: A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS: TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCß], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCß, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION: Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.
Assuntos
Doença das Coronárias , Fibrinolíticos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Trichosanthes , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Fibrinolíticos/química , Doença das Coronárias/tratamento farmacológico , Ratos , Masculino , Trichosanthes/química , Peixe-Zebra , Ratos Sprague-Dawley , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Medicina Tradicional Chinesa/métodosRESUMO
BACKGROUND: Human-derived gastric cancer organoids (GCOs) are widely used in gastric cancer research; however, the culture success rate is generally low. AIM: To explore the potential influencing factors, and the literature on successful culture rates of GCOs was reviewed using meta-analysis. METHODS: PubMed, Web of Science, and EMBASE were searched for studies. Two trained researchers selected the studies and extracted data. STATA 17.0 software was used for meta-analysis of the incidence of each outcome event. The adjusted Methodological Index for Non-Randomized Studies scale was used to assess the quality of the included studies. Funnel plots and Egger's test were used to detect publication bias. Subgroup analyses were conducted for sex, tissue source, histological classification, and the pathological tumor-node-metastasis (pTNM) cancer staging system. RESULTS: Eight studies with a pooled success rate of 66.6% were included. GCOs derived from women and men had success rates of 67% and 46.7%, respectively. GCOs from surgery or biopsy/endoscopic submucosal dissection showed success rates of 70.9% and 53.7%, respectively. GCOs of poorly-differentiated, moderately-differentiated and signet-ring cell cancer showed success rates of 64.6%, 31%, and 32.7%, respectively. GCOs with pTNM stages I-II and III-IV showed success rates of 38.3% and 65.2%, respectively. Y-27632 and non-Y-27632 use showed success rates of 58.2% and 70%, respectively. GCOs generated with collagenase were more successful than those constructed with Liberase TH and TrypLE (72.1% vs 71%, respectively). EDTA digestion showed a 50% lower success rate than other methods (P = 0.04). CONCLUSION: GCO establishment rate is low and varies by sex, tissue source, histological type, and pTNM stage. Omitting Y-27632, and using Liberase TH, TrypLE, or collagenase yields greater success than EDTA.
RESUMO
A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.
Assuntos
Hemípteros , Orthobunyavirus , Vírus de RNA , Animais , Feminino , Filogenia , Insetos , Vírus de RNA/genéticaRESUMO
Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
Assuntos
Migração Animal , Genômica , Vento , Animais , Genômica/métodos , Hemípteros/genética , Genoma de Inseto , Genética PopulacionalRESUMO
Photocatalytic selective oxidation plays an important role in developing green chemistry. However, it is challenging to design an efficient photocatalyst for controlling the selectivity of photocatalytic oxidation reaction and exploring its detailed mechanism. Here, we synthesized three conjugated microporous polymers (CMPs) with D-A structures, named M-SATE-CMPs (MZn, Cu and Co), with different d-band centers based on different metal centers, resulting in the discrepancy in adsorption and activation capacities for the reactants, which produces the selectivity of ß-keto esters being catalyzed into α-hydroperoxide ß-keto esters (ROOH) or to α-hydroxyl ß-keto esters (ROH). Density functional theory (DFT) calculations also demonstrate that the adsorption and activation capacities of the metal active centers in M-SATE-CMPs (MZn, Cu and Co) for ROOH are the key factors to influence the photocatalytic selective oxidation of ß-keto ester. This study provides a promising strategy for designing a metallaphotoredox catalyst whose photocatalytic selectivity depends on the d-band center of metal site in the catalyst.