Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Environ Sci Technol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021234

RESUMO

Cadmium (Cd) geochemical behavior is strongly influenced by its adsorption onto natural phyllomanganates, which contain both layer edge sites and vacancies; however, Cd isotope fractionation mechanisms at these sites have not yet been addressed. In the present work, Cd isotope fractionation during adsorption onto hexagonal (containing both types of sites) and triclinic birnessite (almost only edge sites) was investigated using a combination of batch adsorption experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, surface complexation modeling, and density functional theory (DFT) calculations. Light Cd isotopes are preferentially enriched on solid surfaces, and the isotope fractionation induced by Cd2+ adsorption on edge sites (Δ114/110Cdedge-solution = -1.54 ± 0.11‰) is smaller than that on vacancies (Δ114/110Cdvacancy-solution = -0.71 ± 0.21‰), independent of surface coverage or pH. Both Cd K-edge EXAFS and DFT results indicate the formation of double corner-sharing complexes on layer edge sites and mainly triple cornering-sharing complexes on vacancies. The distortion of both complexes results in the negative isotope fractionation onto the solids, and the slightly longer first Cd-O distances and a smaller number of nearest Mn atoms around Cd at edge sites probably account for the larger fractionation magnitude compared to that of vacancies. These results provide deep insights into Cd isotope fractionation mechanisms during interactions with phyllomanganates.

2.
Environ Res ; 257: 119392, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857857

RESUMO

Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.


Assuntos
Cádmio , Compostos de Manganês , Óxidos , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/química , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Compostos de Manganês/química , Compostos de Manganês/metabolismo , Óxidos/química , Recuperação e Remediação Ambiental/métodos , Solo/química , Ácido Cítrico/metabolismo , Adsorção , Minerais/metabolismo , Minerais/química , Compostos de Ferro/metabolismo , Compostos de Ferro/química
3.
Bioresour Technol ; 404: 130913, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821426

RESUMO

This work proposes an advanced biochar material (ß-CD@SiBC) for controllable transformation of specific silicon (Si) forms through endogenous Si activation and functional group introduction for efficient cadmium (Cd) immobilization and removal. The maximum adsorption capacity of ß-CD@SiBC for Cd(II) reached 137.6 mg g-1 with a remarkable removal efficiency of 99 % for 200 mg L-1Cd(II). Moreover, the developed ß-CD@SiBC flow column exhibited excellent performance at the environmental Cd concentration, with the final concentration meeting the environmental standard for surface water quality (0.05 mg L-1). The remediation mechanism of ß-CD@SiBC could be mainly attributed to mineral precipitation and ion exchange, which accounted for 42 % and 29 % of the remediation effect, respectively, while functional group introduction enhanced its binding stability with Cd. Overall, this work proposes the role and principle of transformation of Si forms within biochar, providing new strategies for better utilizing endogenous components in biomass.


Assuntos
Cádmio , Carvão Vegetal , Silício , Poluentes Químicos da Água , Cádmio/química , Carvão Vegetal/química , Silício/química , Adsorção , Purificação da Água/métodos , Recuperação e Remediação Ambiental/métodos
4.
Sci Total Environ ; 931: 172907, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703846

RESUMO

The presence of dissolved Fe(III) and Fe(III)-containing minerals has been found to alleviate cadmium (Cd) accumulation in wheat plants grown in Cd-contaminated soils, but the specific mechanism remains elusive. In this work, hydroponic experiments were conducted to dissect the mechanism for dissolved Fe(III) (0-2000 µmol L-1) to decrease Cd uptake of wheat plants and study the influence of Fe(III) concentration and Cd(II) pollution level (0-20 µmol L-1) on the Cd uptake process. The results indicated that dissolved Fe(III) significantly decreased Cd uptake through rhizosphere passivation, competitive absorption, and physiological regulation. The formation of poorly crystalline Fe(III) oxides facilitated the adsorption and immobilization of Cd(II) on the rhizoplane (over 80.4 %). In wheat rhizosphere, the content of CaCl2-extractable Cd decreased by 52.7 % when Fe(III) concentration was controlled at 2000 µmol L-1, and the presence of Fe(III) may reduce the formation of Cd(II)-organic acid complexes (including malic acid and succinic acid secreted by wheat roots), which could be attributed to competitive reactions. Down-regulation of Cd uptake genes (TaNramp5-a and TaNramp5-b) and transport genes (TaHMA3-a, TaHMA3-b and TaHMA2), along with up-regulation of the Cd efflux gene TaPDR8-4A7A, contributed much to the reduction of Cd accumulation in wheat plants in the presence of Fe(III). The inhibitory effect of Fe(III) on Cd uptake and transport in wheat plants declined with increasing Cd(II) concentration, particularly at 20 µmol L-1. This work provides important implications for remediating Cd-contaminated farmland soil and ensuring the safe production of wheat by using dissolved Fe(III) and Fe(III)-containing minerals.


Assuntos
Cádmio , Rizosfera , Poluentes do Solo , Triticum , Triticum/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Ferro/metabolismo , Compostos Férricos , Raízes de Plantas/metabolismo , Solo/química
5.
Sci Total Environ ; 919: 170494, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342449

RESUMO

Heavy metal migration behaviors and mechanisms in soils are important for pollution control and remediation. However, there are few related studies in arid areas under extreme weather patterns. In this study, we developed a one-dimensional continuous point source unsaturated solute transport model, and utilized Hydrus-1D to simulate the transport of Cu, As and Zn, in the pack gas zones of soils within the impact areas of two typical mining areas in Inner Mongolia. The results show that the soil has a significant interception capacity, with a short heavy metal vertical migration distance of ≤100 cm. Soil texture and heavy metal sorption affinity are two key factors that influence heavy metal transport. In soils with high contents of sands but low contents of clays, heavy metals have large mobility and thus migrate deeper and are more evenly distributed in the soil profile. The migration of different heavy metals in the same soil also varies considerably, with large migration depth for metals having low binding affinities onto soils. Scenario analysis for extreme drought and rainfall shows that, rainfall amount and intensity are positively correlated with heavy metal transport depth and negatively correlated with the peak concentration. Increasing rainfall/intensity results in a more uniform distribution of heavy metals, and lower profile concentrations owing to enhanced horizontal dispersion of surface runoff. When the total amount and intensity of rainfall remain constant, continuous or intermittent rainfall only affects the transport process but has almost no effect on the final pollutant concentration redistribution in the soil. These results provide theoretical data for estimating the degree of heavy metal pollution, and help design control and remediation strategies for polluted soils.

6.
Heliyon ; 10(1): e23371, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163114

RESUMO

In the present study, we demonstrated that the presence of cysteine could remarkably enhance the degradation of atrazine by Fe3O4/persulfate system. The results of electron paramagnetic resonance (EPR) spectra confirmed the combination of cysteine and Fe3O4 exhibited much higher activity on activation of persulfate to generate more SO4•- and •OH than Fe3O4 alone. At pH of 3.0, SO4•- and •OH contributed to about 58.2 % and 41.8 % of atrazine removal respectively, while •OH gradually dominated the oxidation of atrazine from neutral condition to alkaline condition. The co-existing Cl- and HCO3- could quench SO4•-, resulting in the inhibition of atrazine degradation. The presence of low natural organic matters (NOM) concentration (0-2 mg L-1) could enhance the atrazine removal, and high concentration (>5 mg L-1) of NOM restrained the atrazine degradation. During the Cysteine/Fe3O4/Persulfate process, cysteine served as a complexing reagent and reductant. Through acidolysis and complexation, Fe3O4 could release dissolved and surface bound Fe2+, both of which contributed to the activation of persulfate together. Meanwhile, cysteine was not rapidly consumed due to a regeneration process, which was beneficial for maintaining Fe2+/Fe3+ cycle and constantly accelerating the activation of persulfate for atrazine degradation. The reused Fe3O4 and cysteine in the Cysteine/Fe3O4/Persulfate process exhibited high stability for the atrazine degradation after three cycles. The degradation pathway of atrazine included alkylic-oxidation, dealkylation, dechlorination-hydroxylation processes. The present study indicates the novel Cysteine/Fe3O4/Persulfate process might be a high potential for treatment of organic polluted water.

7.
Water Res ; 246: 120734, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862875

RESUMO

It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 µg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Oxirredução , Eletrodos , Adsorção
8.
Sci Total Environ ; 904: 166653, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673243

RESUMO

With the increased construction of dam reservoirs and the demand for water security, terrestrial dissolved organic matter (DOM) has received attention because of its role in regulating water quality, ecological functions, and the fate and transport of pollutants in dam reservoirs. This study investigated the transformations of soil DOM and vegetation DOM of dam reservoirs following photodegradation and biodegradation before conservative mixing, as well as the resultant effects on phenanthrene binding. Based on the results, terrestrial DOM could undergo transformation via photodegradation and biodegradation before conservative mixing in dam reservoirs. Although both processes resulted in substantial decreases in DOM concentrations, the changes in chromophoric DOM and fluorescent DOM depended on the original DOM sources. Furthermore, the photodegradation of terrestrial DOM resulted in more pronounced photobleaching than photomineralization. In addition, photodegradation of terrestrial DOM resulted in the generation of DOM-derived by-products with low molecular weight and low aromaticity, whereas the biodegradation of terrestrial DOM resulted in DOM-derived by-products with low molecular weight and high aromaticity. Subsequently, the photodegradation and biodegradation of terrestrial DOM substantially enhanced the binding affinity of phenanthrene. Soil DOM is prior to vegetation DOM when predicting the ecological risk of HOCs. These results indicate that the terrestrial DOM in dam reservoirs should be reconsidered before conservative mixing. Further studies on the coupling effects of both biogeochemical processes, as well as on the relative contributions of soil DOM and vegetation DOM after transformation to the aquatic DOM in dam reservoirs, are required. This study provides information on the environmental effects of dam construction from the perspective of biogeochemical processes.


Assuntos
Matéria Orgânica Dissolvida , Qualidade da Água , Fotólise , Solo/química , Biodegradação Ambiental
9.
Prev Med Rep ; 34: 102266, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37288138

RESUMO

Psychological resilience helps individuals to actively respond to various emergencies, but its mediating role between the rumination and post-traumatic growth (PTG) of nurses remains unknown. Our study aimed to explore the extent to which psychological resilience mediates the association between rumination and PTG among nurses working in mobile cabin hospitals. This cross-sectional survey was conducted on 449 medical team members working in mobile cabin hospitals to support the prevention and control of coronavirus disease 2019 in Shanghai, China in 2022. Pearson correlation analysis was applied to assess the correlation between rumination, psychological resilience, and PTG. Structural equation models were used to examine the mediating role of psychological resilience between rumination and PTG. Our study results showed that deliberate rumination directly promoted psychological resilience and PTG and had positive effects on PTG through the mediating effect of psychological resilience. Invasive rumination had no direct effect on PTG. However, it had a negative effect on PTG through the mediating effect of psychological resilience. Together the results of this study indicate that the mediating effect of psychological resilience was significant in the association of rumination and PTG among mobile cabin hospital nurses, with a higher individual psychological resilience level helping nurses to achieve PTG. Therefore, targeted interventions should be implemented to improve nurses' psychological resilience and guide their rapid growth.

10.
Environ Monit Assess ; 195(5): 549, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032386

RESUMO

Birnessite has been widely used for electrochemical removal of heavy metals due to its high pseudocapacitance. Incorporation of carbon-based materials into birnessite can enhance its conductivity and stability, and synergistically improve the electrochemical adsorption capacity due to the double-layer capacitor reaction derived from carbon-based materials. In this study, biochar was successfully incorporated with birnessite at various ratios to synthesize composites (BC-Mn) for effective electrochemical removal of cadmium (Cd(II)) from water. The effects of cell voltage, initial pH, and recycling performance of BC-Mn were evaluated. As a result, the electrosorption capacity of BC-Mn for Cd(II) exhibited gradual increases with increasing birnessite content and reached equilibrium at a Mn content of 20% (BC-Mn20). The Cd(II) adsorption capacity of BC-Mn20 rose at higher cell voltage, and reached the maximum at 1.2 V. At pH 3.0-6.0, the electrosorption capacity initially rose until pH 5.0 and then approached equilibrium with a further increase in pH value. The Cd(II) electrochemical adsorption capacity of BC-Mn20 in the solution could reach 104.5 mg g-1 at pH 5.0 for 8 h at 1.2 V. Moreover, BC-Mn20 exhibited excellent reusability with a stability of 95.4% (99.7 mg g-1) after five cycles of reuse. Due to its superior heavy metal adsorption capacity and reusability, BC-Mn20 may have a promising prospect in the remediation of heavy metal polluted water.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais Pesados/análise , Carvão Vegetal/química , Água , Adsorção
11.
Environ Pollut ; 320: 121002, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608733

RESUMO

Heavy metal pollution of soils has become a serious environmental problem. Soil washing with degradable reagents is an effective remediation technique of heavy metal pollution, and the generated leachate must be appropriately treated before discharge. However, the existing methods usually have the problems of large consumption of regents, high cost, and secondary pollution. This study proposed a reagent-free electrochemical precipitation method to remove mixed heavy metal ions extracted from soils by citrate using inert electrodes (IrO2-Ta2O5/Ti anode and graphite cathode). The results showed that the low potential of cathode led to the electrodeposition of Cd; the local alkaline environment provided by electro-mediated water reduction caused the hydrolytic precipitation of Zn and Pb; and the precipitation of Fe washed out from Fe-rich soil resulted in the coprecipitation of As on cathode surface. These combined cathodic precipitation processes decreased the concentrations of toxic heavy metals by over 99.4% after 12 h of electrolysis at 26 mA cm-2. The electrodes exhibited high stability after multiple successive cycles of reuse. The concentrations of As, Zn, Pb and Cd in the leachate decreased to below the limits of industrial wastewater discharge in each cycle, and those in soils could be reduced by 53.8%, 58.8%, 25.5%, and 70.2% at the initial concentrations of 1549, 1016, 310 and 50 mg kg-1, respectively. The heavy metal removal rate increased with increasing current density in the range of 0-52 mA cm-2. This work provides an efficient and sustainable method for the remediation of site soils polluted by mixed heavy metals.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Cádmio/análise , Indicadores e Reagentes , Chumbo , Metais Pesados/análise , Eletrodos , Poluentes do Solo/análise
12.
Water Res ; 226: 119297, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323219

RESUMO

Fe-Mn composite oxide (FMO) is widely applied to the oxidation and removal of As(III) from water. However, As(III) can directly reduce manganese oxides, decreasing the oxidation capacity or reusability and thereby greatly limiting the applicability of FMO. Here, the oxidation capacity and reusability of FMO for As(III) were efficiently improved by light radiation, and the effect of typical coexisting ions (SO42- and Ca2+) on the removal of As(III) was also studied. O2•- produced from excited manganese oxide and ligand-to-metal charge transfer in iron oxide-As(III) complex enhanced As(III) oxidation and removal under light radiation. At an initial As(III) concentration of 1000 µg L-1, the total As concentration was respectively decreased to 11.5, 1.5 and 4.4 µg L-1 under darkness, UV light and sunlight at 180 min, and could be reduced to below the guideline limitation of drinking water (10 µg L-1) within 40 and 60 min under UV light and sunlight, respectively. SO42- exhibited negligible effect on As removal efficiency because FMO had obviously lower adsorption capacity and selectivity for SO42- than for As(V). The adsorption of coexisting Ca2+ on manganese oxide decreased the negative charge on the FMO surface, thereby improving As(III) adsorption and oxidation. FMO exhibited excellent reusability, and a total As removal efficiency of 99.1% was still maintained after five cycles of an adsorption-desorption process under UV light. This work elucidates the photochemical oxidation and removal mechanism of FMO for As(III), and proposes a low-cost and efficient method for the detoxification of As(III)-contaminated drinking water.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Poluentes Químicos da Água/análise , Compostos de Manganês , Óxidos , Compostos Férricos , Adsorção , Oxirredução , Purificação da Água/métodos
13.
Environ Pollut ; 310: 119869, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926734

RESUMO

In general, the remediation performance of heavy metals can be further improved by metal-oxide modified biochar. This work used MgO-modified rice husk biochar (MgO-5%@RHB-450 and MgO-5%@RHB-600) with high surface activity for simultaneous remediation and removal of heavy metals in soil and wastewater. The adsorption of MgO-5%@RHB-450/MgO-5%@RHB-600 for Cd(II), Cu(II), Zn(II) and Cr(VI) followed the pseudo-second order, with the adsorption capacities reaching 91.13/104.68, 166.68/173.22, 80.12/104.38 and 38.88/47.02 mg g-1, respectively. The addition of 1.0% MgO-5%@RHB-450 and MgO-5%@RHB-600 could effectively decrease the CaCl2-extractable Cd concentration (CaCl2-Cd) by 66.2% and 70.0%, respectively. Moreover, MgO-5%@RHB-450 and MgO-5%@RHB-600 facilitated the transformation of exchangeable fractions to carbonate-bound and residual fractions, and reduced the exchangeable fractions by 8.1% and 9.6%, respectively. The mechanisms for the removal of heavy metals from wastewater by MgO-5%@RHB-450 and MgO-5%@RHB-600 mainly included complexation, ion exchange and precipitation, and the immobilization mechanisms in soil may be precipitation, complexation and pore filling. In general, this study provides high-efficiency functional materials for the remediation of heavy metal pollution.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Adsorção , Biomassa , Cádmio , Cloreto de Cálcio , Carvão Vegetal , Óxido de Magnésio , Solo , Águas Residuárias
14.
J Environ Manage ; 317: 115425, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751250

RESUMO

Pollution of arsenic (As) in acid mine drainage (AMD) is a universal environmental problem. The weathering of pyrite (FeS2) and other sulfide minerals leads to the generation of AMD and accelerates the leaching of As from sulfide minerals. Pyrite can undergo adsorption and redox reactions with As, affecting the existing form and biotoxicity of As. However, the interaction process between As and pyrite in AMD under sunlight radiation remains unclear. Here, we found that the oxidation and immobilization of arsenite (As(III)) on pyrite can be obviously promoted by the reactive oxygen species (ROS) in sunlit AMD, particularly by OH. The reactions between hole-electron pairs and water/oxygen adsorbed on excited pyrite resulted in the production of H2O2, OH and O2-, and OH was also generated through the photo-Fenton reaction of Fe2+/FeOH2+. Weakly crystalline schwertmannite formed from the oxidation of Fe2+ ions by OH contributed much to the adsorption and immobilization of As. In the mixed system of pyrite (0.75 g L-1), Fe2+ (56.08 mg L-1) and As(III) (1.0 mg L-1) at initial pH 3.0, the decrease ratio of dissolved total As concentration was 1.6% under dark conditions, while it significantly increased to 69.0% under sunlight radiation. The existence of oxygen or increase in initial pH from 2.0 to 4.0 accelerated As(III) oxidation and immobilization due to the oxidation of more Fe2+ and production of more ROS. The present work shows that sunlight significantly affects the transformation and migration of As in AMD, and provides new insights into the environmental behaviors of As.


Assuntos
Arsênio , Ácidos , Compostos Ferrosos , Peróxido de Hidrogênio , Ferro , Compostos de Ferro , Minerais/química , Oxirredução , Oxigênio , Espécies Reativas de Oxigênio , Sulfetos/química
15.
Environ Sci Pollut Res Int ; 29(47): 71583-71592, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35604606

RESUMO

In polluted waters, arsenic (As) poses substantial risks to the environment and human health. Inorganic As mainly exists as As(V) and As(III), and As(III) usually shows higher mobility and toxicity and is more difficult to be removed by coagulation. The oxidation of coexisting Fe(II) can accelerate As(III) oxidation and removal by promoting the generation of reactive intermediates and Fe(III) coagulant in the presence of dissolved oxygen. However, the removal efficiency of As from acidic wastewaters is far from satisfactory due to the low Fe(II) oxidation rate by dissolved oxygen. Herein, UV irradiation was applied to stimulate the synergistic oxidation of Fe(II)/As(III), and the effects of coexisting Fe(II) concentration and pH were also evaluated. The synergistic oxidation of Fe(II)/As(III) significantly enhanced the removal of As from acidic waters. Under UV irradiation, Fe(II) significantly promoted the generation of reactive oxygen species (ROS), thereby facilitating As(III) oxidation. In addition, the formation of ferric arsenate and amorphous ferric (hydr)oxides contributed much to As removal. In the As(III)-containing solution with 200 µmol L-1 Fe(II) at initial pH 4.0, the total arsenic (As(T)) concentration decreased from 67.0 to 1.3 and 0.5 µmol L-1, respectively, at 25 and 120 min under UV irradiation. The As(T) removal rate increased with increasing Fe(II) concentration, and first increased and then decreased with increasing initial pH from 2.0 to 6.0. This study clarifies the mechanism for the synergistic photo-oxidation of Fe(II)/As(III) under UV irradiation, and proposes a new strategy for highly efficient As(III) removal from acidic industrial and mining wastewaters.


Assuntos
Arsênio , Arseniatos , Compostos Férricos , Compostos Ferrosos , Humanos , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Óxidos , Oxigênio , Espécies Reativas de Oxigênio , Águas Residuárias
16.
Chemosphere ; 302: 134851, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35533934

RESUMO

Threats posed by Cd-contaminated arable soils to food security have attracted increasing attention. The combination of organic and inorganic amendments has been extensively applied to immobilize Cd in paddy soils. However, the regulatory mechanism of Cd fractionation under these combined amendments and the effect on wheat Cd accumulation remain unclear in upland soils. In this work, different combinations of organic and inorganic amendments were prepared with biochar, zeolite and humus, and the Cd-immobilization mechanism was also investigated in field experiments. The results demonstrated that the mixture of biochar, zeolite and humus had excellent Cd immobilization performance in highly Cd-contaminated (4.26 ± 1.25 mg kg-1) weakly alkaline soils, resulting in 76.5-84.8% decreases in soil available Cd. The contribution of single components to Cd immobilization in the combined amendment follows the order of humus > biochar > zeolite. The combined amendment converted the acid soluble Cd to the Cd bound to the reducible fraction with higher stability, thereby decreasing Cd bioavailability. The maximum Cd decrease rate in wheat roots, straw and grains could reach 68.2%, 45.0% and 59.3%, respectively, and the Cd content in grains (0.098 mg kg-1) was lower than the food security standards of China (0.1 mg kg-1). Wheat planting for two successive years in a large-scale field further verified the superior Cd immobilization performance and stability of the combined amendment in moderately to slightly Cd-contaminated soil. The present study provides references for the remediation of Cd-contaminated weakly alkaline upland soils and certain guidance for safe food production.


Assuntos
Oryza , Poluentes do Solo , Zeolitas , Cádmio/análise , Carvão Vegetal/metabolismo , Fazendas , Oryza/metabolismo , Solo , Poluentes do Solo/análise , Triticum/metabolismo
17.
Environ Res ; 212(Pt B): 113341, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35460638

RESUMO

Biochar is a low cost, porous and solid material with an extremely high carbon content, various types of functional groups, a large specific surface area and many other desirable characteristics. Thus, it is often used as an adsorbent or a loading matrix. Nano-magnesium oxide is a crystalline material with small particles and strong ion exchangeability. However, due to the high surface chemical energy, it easily forms agglomerates of particles. Therefore, to combine the advantages of biochar and magnesium, metal magnesium nanoparticles can be loaded onto the surface of biochar with different modification techniques, resulting in biochars with low cost and high adsorption performance to be used as an adsorption matrix (collectively referred to as Mg@BC). This review presents the effects of different Mg@BC preparation methods and synthesis conditions and summarizes the removal capabilities and adsorption mechanisms of Mg@BC for different types of pollutants in water. In addition, the review proposes the prospects for the development of Mg@BC to solve various problems in the future.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cinética , Magnésio , Óxido de Magnésio/química , Águas Residuárias/química , Poluentes Químicos da Água/análise
18.
J Hazard Mater ; 433: 128716, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358816

RESUMO

The weathering of arsenopyrite is closely related to the generation of acid mine drainage (AMD) and arsenic (As) pollution. Solar radiation can accelerate arsenopyrite oxidation, but little is known about the further effect of SO42- on the photochemical process. Here, the photooxidation of arsenopyrite was investigated in the presence of SO42- in simulated AMD environments, and the effects of SO42- concentration, pH and dissolved oxygen on arsenopyrite oxidation were studied as well. SO42- could accelerate the photooxidation of arsenopyrite and As(III) through complexation between nascent schwertmannite and As(III). Fe(II) released from arsenopyrite was oxidized to form schwertmannite in the presence of SO42-, and the photooxidation of arsenopyrite occurred through the ligand-to-metal charge-transfer process in schwertmannite-As(III) complex along with the formation of reactive oxygen species in the presence of O2. The photooxidation rate of arsenopyrite first rose and then fell with increasing SO42- concentration. In the pH range of 2.0-4.0, the photooxidation rate of arsenopyrite progressively increased in the presence of SO42-. This study reveals how SO42- promotes the photooxidation of arsenopyrite and As release in the AMD environment, and improves the understanding of the transformation and migration of As in mining areas.


Assuntos
Arsênio , Compostos de Ferro , Arsenicais , Concentração de Íons de Hidrogênio , Minerais , Oxirredução , Sulfatos , Sulfetos
19.
J Environ Manage ; 307: 114519, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063763

RESUMO

Electrocoagulation of zero-valent iron has been widely applied to the removal of dissolved arsenic, but the solid-liquid separation of arsenic-containing precipitates remains technically challenging. In this work, zero-valent iron was electrochemically oxidized to magnetic iron oxides for the removal of As(Ⅴ) from simulated and actual mining wastewaters. The results indicated that lepidocrocite was formed when zero-valent iron was oxidized by dissolved oxygen, but ferrihydrite and green rust were first formed and then transformed to magnetic iron oxides (mainly magnetite and maghemite) in the electrochemical oxidation from 0 to 0.9 V (vs. SCE), which facilitates the adsorption of As(V) and subsequent solid-liquid separation under a magnetic field. In simulated As(V)-containing solution with initial pH 7.0, zero-valent iron was electrochemically oxidized to magnetite and maghemite at 0.6 V (vs. SCE) for 2 h. The As(V) concentration first decreased from 5127.5 to 26.8 µg L-1 with a removal ratio of 99.5%. In actual mining wastewaters, zero-valent iron was electrochemically oxidized to maghemite at 0.6 V (vs. SCE) for 24 h, and the As(V) concentration decreased from 5486.4 to 3.6 µg L-1 with a removal ratio of 99.9%. The removal ratio of As(V) increased slightly with increasing potential, and increased first and then decreased with increasing initial pH. Compared with that of SO42- and NO3-, the presence of Cl- significantly enhanced the removal of As(V). This work provides a highly efficient, facile and low-cost technique for the treatment of arsenic-containing wastewaters.


Assuntos
Arsênio , Poluentes Químicos da Água , Eletrocoagulação , Compostos Férricos , Ferro , Fenômenos Magnéticos , Óxidos , Águas Residuárias
20.
Sci Total Environ ; 817: 153042, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032531

RESUMO

Arsenic (As) pollution of soils poses serious threats to the ecological environment. In this study, organic acid (citrate) washing and electrochemical removal (manganese oxide cathode) were combined to remediate highly As-contaminated soils, and the effect of voltage was investigated as well. Citrate could extract the As bound to iron and aluminum oxides and enhance As mobility by indirectly reducing As(V) to As(III) in the soils. During the electrochemical removal of As, the rhodochrosite produced from the reduction of birnessite at the cathode, the birnessite generated from the re-oxidation of released Mn(II) and the ferrihydrite formed from the hydrolysis of Fe(III) at the anode together contributed to the adsorption and fixation of As in the leachate. After three successive rounds of combined remediation by citrate (0.1 mol L-1) washing and electrochemical removal with birnessite electrode at 1.5 V, the As was totally removed in the leachate and the content of As bound to iron and aluminum (hydr)oxides was reduced by 84.2% in soils. Correspondingly, the contents of total and bioavailable As in the soil decreased from 1981.4 and 242.0 to 563.2 and 86.0 mg kg-1, respectively. The As removal efficiency from the leachate and soil increased with increasing voltage from 0 to 1.5 V. This study provides a new method for the effective treatment of As-contaminated soils.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Poluentes do Solo , Arsênio/análise , Citratos , Ácido Cítrico , Compostos Férricos/química , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA