Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5469, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937477

RESUMO

Porous frameworks constructed via noncovalent interactions show wide potential in molecular separation and gas adsorption. However, it remains a major challenge to prepare these materials from low-symmetry molecular building blocks. Herein, we report a facile strategy to fabricate noncovalent porous crystals through modular self-assembly of a low-symmetry helicene racemate. The P and M enantiomers in the racemate first stack into right- and left-handed triangular prisms, respectively, and subsequently the two types of prisms alternatively stack together into a hexagonal network with one-dimensional channels with a diameter of 14.5 Å. Remarkably, the framework reveals high stability upon heating to 275 °C, majorly due to the abundant π-interactions between the complementarily engaged helicene building blocks. Such porous framework can be readily prepared by fast rotary evaporation, and is easy to recycle and repeatedly reform. The refined porous structure and enriched π-conjugation also favor the selective adsorption of a series of small molecules.

2.
Small ; : e2401432, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818686

RESUMO

Colloidal composites, translating the great potential of nanoscale building bricks into macroscopic dimensions, have emerged as an appealing candidate for new materials with applications in optics, energy storage, and biomedicines. However, it remains a key challenge to bridge the size regimes from nanoscopic colloidal particles to macroscale composites possessing mechanical robustness. Herein, a bottom-up approach is demonstrated to manufacture colloidal composites with customized macroscopic forms by virtue of the co-assembly of nanosized soft polymeric micelles and hard inorganic nanoparticles. Upon association, the hairy micellar corona can bind with the hard nanoparticles, linking individual hard constituents together in a soft-hard alternating manner to form a collective entity. This permits the integration of block copolymer micelles with controlled amounts of hard nanoparticles into macroscopic colloidal composites featuring diverse internal microstructures. The resultant composites showed tunable microscale mechanical strength in a range of 90-270 MPa and macroscale mechanical strength in a range of 7-42 MPa for compression and 2-24 MPa for bending. Notably, the incorporation of soft polymeric micelles also imparts time- and temperature-dependent dynamic deformability and versatile capacity to the resulting composites, allowing their application in the low-temperature plastic processing for functional fused silica glass.

3.
J Am Chem Soc ; 146(21): 14734-14744, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748980

RESUMO

Symmetry breaking is prevalent in nature and provides distinctive access to hierarchical structures for artificial materials. However, it is rarely explored in two-dimensional (2D) entities, especially for lateral asymmetry. Herein, we describe a unique symmetry breaking process in surface-initiated 2D living crystallization-driven self-assembly. The 2D epitaxial growth occurs only at one lateral side of the immobilized cylindrical micelle seeds, accessing unilateral platelets with the yield increasing with the seed length, the growth temperature, and poly(2-vinylpyridine) corona length (maximum = 92%). Generally, the tilted immobilization of seeds blocks one lateral side and triggers the lateral symmetry breaking, where the intensity and spatial arrangement of seed-surface interactions dictate the regulation. Segmented unilateral platelets with segmented corona regions are further fabricated with the addition of different blended unimers. Remarkably, discrete slope-like and dense blade-like platelet arrays grow off the surface when seeds are compactly aligned either with spherical micelles or themselves. This strategy provides nanoscale insights into the symmetry breaking in long-range self-assembly and would be promising for the design of innovative colloids and smart surfaces.

4.
Angew Chem Int Ed Engl ; 63(11): e202320076, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38230611

RESUMO

We report a unique category of π-extended diaza[7]helicenes with double negative curvatures. This is achieved by two-fold regioselective heptagonal cyclization of the oligoarylene-carbazole precursors through either intramolecular C-H arylation or Scholl reaction. The fusion of two heptagonal rings in the helical skeleton dramatically increases the intramolecular strain and forces the two terminal carbazole moieties to stack in a compressed fashion. The presence of the deformable negatively curved heptagonal rings endows the resulting diaza[7]helicenes with dynamic chiral skeletons, aggregation-induced emission feature and relatively low racemization barrier of ca. 25.6 kcal mol-1 . Further π-extension on the carbazole moieties subsequently leads to a more sophisticated C2 -symmetric homochiral triple helicene. Notably, these π-extended diaza[7]helicenes show structure-dependent stacking upon crystallization, switching from heterochiral packing to intra-layer homochiral stacking. Interestingly, the C2 -symmetric triple helicene molecules spontaneously resolve into a homochiral lamellar structure with 31 helix symmetry. Upon ultrasonication in a nonsolvent, the crystals can be readily exfoliated into large-area ultrathin nanosheets with height of ca. 4.4 nm corresponding to two layers of stacked triple helicene molecules and relatively thicker nanosheets constituted by even-numbered molecular lamellae. Moreover, regular hexagonal thin platelets with size larger than 30 µm can be readily fabricated by flash aggregation.

5.
Angew Chem Int Ed Engl ; 63(9): e202315740, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38195825

RESUMO

Nanostructured conjugated polymers are of widespread interest due to their broad applications in organic optoelectronic devices, biomedical sensors and other fields. However, the alignment of conjugated nanostructures perpendicular to a surface remains a critical challenge. Herein, we report a facile method to directly self-assemble a poly(3-(2-ethylhexyl)thiophene), P3EHT-based block copolymer into densely aligned micellar brushes through surface-initiated living crystallization-driven self-assembly. The presence of an ethyl pendant on the side group intrinsically moderates the crystallization rate of the polythiophene main chains, and hence favors the controlled living growth of long conjugated fibers and the subsequent fabrication of conjugated micellar brushes. The corona of the micellar brush can be further decorated with platinum nanoparticles, which enables the formation of erect nanoarrays with heights up to 2700 nm in the dried state. This also renders the micellar brush catalytically active toward hydrogen evolution reaction, which shows a low overpotential of 27 mV at 10 mA cm-2 . Notably, the P3EHT-based micellar brush can simultaneously grow with polyferrocenyldimethylsilane, PFS-based micellar brush on the same surface without any significant interference between the two systems. Thus, these two micellar brushes can be patterned through site-selective immobilization of two types of seeds followed by independent living self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA