Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Nat Commun ; 15(1): 9047, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39426957

RESUMO

All-optical nonlinear activation functions (NAFs) are crucial for enabling rapid optical neural networks (ONNs). As linear matrix computation advances in integrated ONNs, on-chip all-optical NAFs face challenges such as limited integration, high latency, substantial power consumption, and a high activation threshold. In this work, we develop an integrated nonlinear optical activator based on the butt-coupling integration of two-dimensional (2D) MoTe2 and optical waveguides (OWGs). The activator exhibits an ultra-broadband response from visible to near-infrared wavelength, a low activation threshold of 0.94 µW, a small device size (~50 µm2), an ultra-fast response rate (2.08 THz), and high-density integration. The excellent nonlinear effects and broadband response of 2D materials have been utilized to create all-optical NAFs. These activators were applied to simulate MNIST handwritten digit recognition, achieving an accuracy of 97.6%. The results underscore the potential application of this approach in ONNs. Moreover, the classification of more intricate CIFAR-10 images demonstrated a generalizable accuracy of 94.6%. The present nonlinear activator promises a general platform for three-dimensional (3D) ultra-broadband ONNs with dense integration and low activation thresholds by integrating a variety of strong nonlinear optical (NLO) materials (e.g., 2D materials) and OWGs in glass.

2.
Proc Natl Acad Sci U S A ; 121(42): e2410688121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39374388

RESUMO

Cytoskeleton remodeling which generates force and orchestrates signaling and trafficking to govern cell migration remains poorly understood, partly due to a lack of an investigation tool with high system flexibility, spatiotemporal resolution, and computational sensitivity. Herein, we developed a multimodal superresolution imaging system-based architecture-driven quantitative (ADQ) framework in spatiotemporal-angular hyperspace to enable both identification of the optimal imaging mode with well-balanced fidelity and phototoxicity and accurate postcharacterization of microtubule remodeling. In the ADQ framework, a pixel/voxel-wise metric reflecting heterogeneous intertubule alignment was proposed with improved sensitivity over previous efforts and further incorporated with temporal features to map dynamic microtubule rearrangements. The ADQ framework was verified by assessing microtubule remodeling in drug-induced (de)polymerization, lysosome transport, and migration. Different remodeling patterns from two migration modes were successfully revealed by the ADQ framework, with a front-rear polarization for individual directed migration and a contact site-centered polarization for cell-cell interaction-induced migration in an immune response model. Meanwhile, these migration modes were found to have consistent orientation changes, which exhibited the potential of predicting migration trajectory.


Assuntos
Movimento Celular , Citoesqueleto , Microtúbulos , Microtúbulos/metabolismo , Humanos , Citoesqueleto/metabolismo , Lisossomos/metabolismo
3.
Nat Commun ; 15(1): 8366, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333548

RESUMO

The direct laser writing (DLW) of photoluminescent metal clusters is inspiring intensive research in functional glasses. However, understanding the influence of the host structure on cluster formation and visualizing DLW-induced clusters at the atomic scale remains challenging. In this work, we develop a highly photosensitive fluorophosphate glass through fluorine incorporation. The addition of fluorine establishes a conducive environment for Ag+ ions before DLW and enhances the availability of reducing agents and diffusion pathways during DLW. These advantages facilitate the formation of Ag clusters under low-energy single-pulsed DLW. Increasing laser energy results in a combination of Ag clusters and glasses defect, forming a dot + ring photoluminescent pattern. Atom probe tomography (APT), a technique capable of mapping the elemental spatial distribution and identifying clustering, is employed to gain more information on laser-induced clusters. Comparison of APT results between samples without and with DLW reveals the formation of Ag clusters after laser writing. The design concept and characterization enrich the understanding of Ag cluster behavior in glasses. This knowledge opens the possibility of rational design of clusters confined in glasses and inspires their synthesis for various applications.

4.
ACS Appl Mater Interfaces ; 16(40): 54520-54528, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39340431

RESUMO

Wearable electronics have significantly advanced the development of highly stretchable strain sensors, which are essential for applications such as health monitoring, human-machine interfaces, and energy harvesting. Fiber-based sensors and polymeric materials are promising due to their flexibility and tunable properties, although balancing sensitivity and stretchability remains a challenge. This study introduces a novel composite strain sensor that combines poly(3-hexylthiophene) and tetrafluoro-tetracyanoquinodimethane to form a charge-transfer complex (CTC) with carbon nanotubes (CNTs) on a styrene-butadiene-styrene substrate. The CTC improves conductivity through effective charge transfer, while CNTs provide mechanical reinforcement and maintain conductive paths, preventing cracks under large strains. Purposefully introduced wrinkles in the structure enhance the detection of small strains. The sensor demonstrated a broad strain-sensing range from 0.01 to 200%, exhibiting high sensitivity to both minor and major deformations. Mechanical tests confirmed strong stress-strain performance, and electrical tests indicated significant conductivity improvements with CNT integration. These results highlight the potential of the sensor for applications in health monitoring, human-machine interfaces, and energy harvesting, effectively mimicking the tactile sensing abilities of human skin.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Nanotubos de Carbono/química , Humanos , Condutividade Elétrica , Tiofenos/química , Nitrilas/química
5.
Opt Lett ; 49(17): 4975-4978, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208012

RESUMO

High-quality three-dimensional computer-generated holograms (3D-CGHs) are crucial for programmable 3D femtosecond laser parallel recording (3D-FLPR). In this study, we introduced an innovative feedback approach for the rapid optimization of 3D-CGHs by incorporating the superposition of the calculated lens phases (CLPs) onto the 3D-CGHs within a feedback system. This feedback system, governed by coordinated control of a spatial light modulator (SLM) and a camera, served to avoid the poor quality of the ordinary CGH system. As a result, we successfully demonstrated coaxial 3D-FLPR in Ag-doped phosphate glass solely using a single fs laser pulse. Additionally, we regulated the energy distribution of the generated 3D multi-focus (3D-MF) to compensate the laser energy losses inside the glass. The presented single-pulse 3D parallel recording indicated the significant advancement facilitated by our method, particularly in enhancing the writing efficiency of optical storage.

6.
Nat Commun ; 15(1): 6746, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117627

RESUMO

Transparent, inorganic composite materials are of broad interest, from structural components in astronomical telescopes and mirror supports to solid-state lasers, smart window devices, and gravitational wave detectors. Despite great progress in material synthesis, it remains a standing challenge to fabricate such transparent glass composites with high crystallinity (HC-TGC). Here, we demonstrate the co-solidification of a mixture of melts with a stark contrast in crystallization habit as an approach for preparing HC-TGC materials. The melts used in this approach are selected so that glass formation and crystal precipitation occur simultaneously and synergistically, avoiding the formation of interfacial cracks, residual pores, and delamination effects. Using this method, various unusual hybridized HC-TGC materials such as oxychloride, oxybromide, and oxyiodide composite systems were fabricated in dense, bulk shapes. These materials exhibit intriguing optical properties and neutron response-ability. Using such HC-TGC materials, we develop a neutron detector and demonstrate the application for efficient neutron monitoring and even single neutron detection. We expect that these findings may help to bring about a generation of fully inorganic, transparent composites with synergistic combinations of conventionally incompatible materials.

7.
Fundam Res ; 4(3): 624-634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933183

RESUMO

The pursuit of compact and integrated devices has stimulated a growing demand for multifunctional sensors with rapid and accurate responses to various physical parameters, either separately or simultaneously. Fluorescent fiber sensors have the advantages of robust stability, light weight, and compact geometry, enabling real-time and noninvasive signal detection by monitoring the fluorescence parameters. Despite substantial progress in fluorescence sensors, achieving multifunctional sensing in a single optical fiber remains challenging. To solve this problem, in this study, we present a bottom-up strategy to design and fabricate thermally drawn multifunctional fiber sensors by incorporating functional nanocrystals with temperature and pressure fluorescence responses into a transparent glass matrix. To generate the desired nanocrystal-in-glass composite (NGC) fiber, the fluorescent activators, incorporated nanocrystals, glassy core materials, and cladding matrix are rationally designed. Utilizing the fluorescence intensity ratio technique, a self-calibrated fiber sensor is demonstrated, with a bi-functional response to temperature and pressure. For temperature sensing, the NGC fiber exhibits temperature-dependent near-infrared emission at temperatures up to 573 K with a maximum absolute sensitivity of 0.019 K-1. A pressure-dependent upconversion emission is also realized in the visible spectral region, with a linear slope of -0.065. The successful demonstration of multifunctional NGC fiber sensors provides an efficient pathway for new paradigms of multifunctional sensors as well as a versatile strategy for future hybrid fibers with novel combinations of magnetic, optical, and mechanical properties.

8.
Light Sci Appl ; 13(1): 130, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834560

RESUMO

Three-dimensional (3D) glass chips are promising waveguide platforms for building hybrid 3D photonic circuits due to their 3D topological capabilities, large transparent windows, and low coupling dispersion. At present, the key challenge in scaling down a benchtop optical system to a glass chip is the lack of precise methods for controlling the mode field and optical coupling of 3D waveguide circuits. Here, we propose an overlap-controlled multi-scan (OCMS) method based on laser-direct lithography that allows customizing the refractive index profile of 3D waveguides with high spatial precision in a variety of glasses. On the basis of this method, we achieve variable mode-field distribution, robust and broadband coupling, and thereby demonstrate dispersionless LP21-mode conversion of supercontinuum pulses with the largest deviation of <0.1 dB in coupling ratios on 210 nm broadband. This approach provides a route to achieve ultra-broadband and low-dispersion coupling in 3D photonic circuits, with overwhelming advantages over conventional planar waveguide-optic platforms for on-chip transmission and manipulation of ultrashort laser pulses and broadband supercontinuum.

9.
Adv Mater ; 36(32): e2404493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38718355

RESUMO

Optical waveguides fabricated in single crystals offer crucial passive/active optical components for photonic integrated circuits. Single crystals possess inherent advantages over their amorphous counterpart, such as lower optical losses in visible-to-mid-infrared band, larger peak emission cross-section, higher doping concentration. However, the writing of Type-I positive refractive index modified waveguides in single crystals using femtosecond laser technology presents significant challenges. Herein, this work introduces a novel femtosecond laser direct writing technique that combines slit-shaping with an immersion oil objective to fabricate low-loss Type-I waveguides in single crystals. This approach allows for precise control of waveguide shape, size, mode-field, and refractive index distribution, with a spatial resolution as high as 700 nm and a high positive refractive index variation on the order of 10-2, introducing new degrees of freedom to design and fabricate passive/active optical waveguide devices. As a proof-of-concept, this work successfully produces a 7 mm-long circular-shaped gain waveguide (≈10 µm in diameter) in an Er3+-doped YAG single crystal, exhibiting a propagation loss as low as 0.23 dB cm-1, a net gain of ≈3 dB and a polarization-insensitive character. The newly-developed technique is theoretically applicable to arbitrary single crystals, holding promising potential for various applications in integrated optics, optical communication, and photonic quantum circuits.

10.
Adv Mater ; 36(23): e2313219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597361

RESUMO

The development of novel materials and structures for efficient second-order nonlinear micro/nano devices remains a significant challenge. In this study, the remarkable enhancement of second-harmonic generation (SHG) and cascaded sum frequency generation in whispering gallery mode microspheres made of surface-crystallized glass with a 6-µm Ba2TiSi2O8 crystal layer are demonstrated. Attributed to the core-shell design, the Ba2TiSi2O8 located on the surface can be efficiently coupled with whispering gallery modes, resulting in a highly efficient micron-scale cavity-enhanced second-order optical nonlinearity. Greatly enhanced SHG of the microcavity is observed, which is up to 80 times stronger than that of a non-resonant sample. Furthermore, owing to the wavelength non-selectivity of random quasi-phase matching, ultra-wideband SHG with a strong response ranging from 860 to 1600 nm and high-contrast polarization characteristics is demonstrated. The glass-ceramic-based microsphere cavity also boosts the cascading optical nonlinearity, manifested by a two-magnitude enhancement of cascaded sum frequency generation. This work delineates an efficient strategy for boosting nonlinear optical response in glass ceramics, which will open up new opportunities for applications in photonics and optical communications.

11.
Nat Commun ; 15(1): 3209, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615033

RESUMO

The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.

12.
Opt Express ; 32(6): 9362-9373, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571172

RESUMO

Volume Bragg grating is one-step fabricated with femtosecond laser direct-writing technology inside a high nonlinearity chalcogenide glass of As2S3. As the generated femtosecond laser filamentation effect could combined with the cylindrical lens focusing method, a two-dimensional refractive index change interface could spontaneously grow along the incident direction with either the laser pulse energy or number increasing. A number of two-dimensional refractive index change interfaces are periodically arranged to stack into a volume Bragg grating. Through periodically moving the sample stage, a grating of 2 mm × 2 mm × 1.7 mm can be fabricated in 15 minutes. And the maximum diffraction efficiency of grating reached 95.49% under the optimal parameters. This study provides a new processing strategy for femtosecond laser direct-writing volume Bragg grating with high processing efficiency and excellent structural performance.

13.
ACS Nano ; 18(8): 6550-6557, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353478

RESUMO

Metal halide perovskite (MHP) structures that exhibit polarized photoluminescence (PL) have attracted significant interest in fabricating light field regulation elements for display, imaging, and information storage applications. We report a three-dimensional direct lithography of heterostructures for controllable polarized PL inside glass by laser-induced localized temperature engineering. The heterostructures consisted of oriented periodic structures (OPSs) and MHP nanocrystals, and the mechanism for hierarchical distribution of heterostructures was illustrated. The patterning of heterostructures for manipulable polarized PL can be used for information encryption, wave-plate, and polarized micro-LEDs.

14.
Adv Sci (Weinh) ; 11(12): e2309433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225714

RESUMO

Oxyfluoride transparent glass-ceramics (GC) are widely used as the matrix for rare-earth (RE) ions due to their unique properties such as low phonon energy, high transmittance, and high solubility for RE ions. Tb3+ doped oxyfluoride glasses exhibit a large absorption cross section for ultraviolet (UV) excitation, high stability, high photoluminescence quantum efficiency, and sensitive spectral conversion characteristics, making them promising candidate materials for use as the spectral converter in UV photodetectors. Herein, a Tb3+ doped oxyfluoride GC is developed by using the melt-quenching method, and the microstructure and optical properties of the GC sample are carefully investigated. By combining with a Si-based photo-resistor,a solar-blind UV detector is fabricated, which exhibits a significant photoelectric response with a broad detection range from 188 to 400 nm. The results indicate that the designed UV photodetector is of great significance for the development of solar-blind UV detectors.

15.
Small ; 20(16): e2306226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037680

RESUMO

It has been well-established that light-matter interactions, as manifested by diverse linear and nonlinear optical (NLO) processes, are mediated by real and virtual particles, such as electrons, phonons, and excitons. Polarons, often regarded as electrons dressed by phonons, are known to contribute to exotic behaviors of solids, from superconductivity to photocatalysis, while their role in materials' NLO response remains largely unexplored. Here, the NLO response mediated by polarons supported by a model ionic metal oxide, TiO2, is examined. It is observed that the formation of polaronic states within the bandgap results in a dramatic enhancement of NLO absorption coefficient by over 130 times for photon energies in the sub-bandgap regions, characterized by a 100 fs scale ultrafast response that is typical for thermalized electrons in metals. The ultrafast polaronic NLO response is then exploited for the development of all-optical switches for ultrafast pulse generation in near-infrared (NIR) fiber lasers and modulation of optical signal in the telecommunication band based on evanescent interaction on a planar waveguide chip. These results suggest that the polarons supported by dielectric ionic oxides can fill the gaps left by dielectric and metallic materials and serve as a novel platform for nonlinear photonic applications.

16.
Opt Lett ; 49(1): 33-36, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134145

RESUMO

High-gain materials and high-quality structures are the two main conditions that determine the amplification performance of optical waveguides. However, it has been hard to balance each other, to date. In this work, we demonstrate breakthroughs in both glass optical gain and optical waveguide structures. We propose a secondary melting dehydration technique that prepares high-quality Er3+-Yb3+ co-doped phosphate glass with low absorption loss. Additionally, we propose a femtosecond laser direct-writing technique that allows controlling the cross section, size, and mode field of waveguides written in glass with high accuracy, leveraging submicron-resolution multi-scan direct-writing optical waveguide technology, which is beneficial for reducing insertion loss. As a proof of concept demonstration, we designed and fabricated two kinds of waveguides, namely, LP01- and LP11-mode waveguides in the Er3+-Yb3+ co-doped phosphate glass, enabling insertion loss as low as 0.9 dB for a waveguide length of 2 mm. Remarkably, we successfully achieved an optical amplification for both the waveguides with a net gain of >7 dB and a net-gain coefficient of >3.5 dB/mm, which is approximately one order of magnitude larger than that in the Er3+-Yb3+ co-doped phosphate glass fabricated by the traditional melt-quenching method. This will open new avenues toward the development of integrated photonic chips.

17.
Adv Sci (Weinh) ; 10(33): e2303421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37822163

RESUMO

Broadband near-infrared (NIR) photonic materials have wide applications. Although extensive studies on rare-earth, transition-metal, and even semiconductor-activated materials have enabled the development of a rich NIR material pool, developing broadband and efficient photonic candidates covering the NIR I and II regions from 750 to 1500 nm has been met with limited success. Here, it is reported that a subnano Te cluster with a characteristic configuration different from that of the ion state may fill the aforementioned gap. Further, a strategy is proposed for the in situ generation and stabilization of Te clusters by tuning the cluster evolution in glass. A novel active photonic glass embedded with a Te cluster is fabricated; it exhibits intense and broadband short-wave NIR luminescence with a central wavelength at 1030 nm and a bandwidth exceeding 330 nm. Interestingly, the glass exhibited a full visible-spectrum conversion ability from 300 to 800 nm. The application of this unique broadband excitation feature for night vision and tissue penetration is demonstrated using a smartphone as the excitation source. These findings demonstrate a fundamental principle of cluster design in glass for creating new properties and provide a new direction for developing novel cluster-derived functional composite materials.

18.
Adv Sci (Weinh) ; 10(34): e2305069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870173

RESUMO

Wavelength conversion based on hybrid inorganic-organic sensitized triplet-triplet annihilation upconversion (TTA-UC) is promising for applications such as photovoltaics, light-emitting-diodes, photocatalysis, additive manufacturing, and bioimaging. The efficiency of TTA-UC depends on the population of triplet excitons involved in triplet energy transfer (TET), the driving force in TET, and the coupling strength between the donor and acceptor. Consequently, achieving highly efficient TTA-UC necessitates the precise control of the electronic states of inorganic donors. However, conventional covalently bonded nanocrystals (NCs) face significant challenges in this regard. Herein, a novel strategy to exert control over electronic states is proposed, thereby enhancing TET and TTA-UC by incorporating ionic-bonded CsPbBr3 and lanthanide Ce3+ ions into composite NCs. These composite-NCs exhibit high photoluminescence quantum yield, extended single-exciton lifetime, quantum confinement, and uplifted energy levels. This engineering strategy of electronic states engendered a comprehensive impact, augmenting the population of triplet excitons participating in the TET process, enhancing coupling strength and the driving force, ultimately leading to an unconventional, dopant concentration-dependent nonlinear enhancement of UC efficiency. This work not only advances fundamental understanding of hybrid TTA-UC but also opens a door for the creation of other ionic-bonded composite NCs with tunable functionalities, promising innovations for next-generation optoelectronic applications.

19.
Front Neurosci ; 17: 1239764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790587

RESUMO

Introduction: Hyperspectral imaging (HSI) has shown promise in the field of intra-operative imaging and tissue differentiation as it carries the capability to provide real-time information invisible to the naked eye whilst remaining label free. Previous iterations of intra-operative HSI systems have shown limitations, either due to carrying a large footprint limiting ease of use within the confines of a neurosurgical theater environment, having a slow image acquisition time, or by compromising spatial/spectral resolution in favor of improvements to the surgical workflow. Lightfield hyperspectral imaging is a novel technique that has the potential to facilitate video rate image acquisition whilst maintaining a high spectral resolution. Our pre-clinical and first-in-human studies (IDEAL 0 and 1, respectively) demonstrate the necessary steps leading to the first in-vivo use of a real-time lightfield hyperspectral system in neuro-oncology surgery. Methods: A lightfield hyperspectral camera (Cubert Ultris ×50) was integrated in a bespoke imaging system setup so that it could be safely adopted into the open neurosurgical workflow whilst maintaining sterility. Our system allowed the surgeon to capture in-vivo hyperspectral data (155 bands, 350-1,000 nm) at 1.5 Hz. Following successful implementation in a pre-clinical setup (IDEAL 0), our system was evaluated during brain tumor surgery in a single patient to remove a posterior fossa meningioma (IDEAL 1). Feedback from the theater team was analyzed and incorporated in a follow-up design aimed at implementing an IDEAL 2a study. Results: Focusing on our IDEAL 1 study results, hyperspectral information was acquired from the cerebellum and associated meningioma with minimal disruption to the neurosurgical workflow. To the best of our knowledge, this is the first demonstration of HSI acquisition with 100+ spectral bands at a frame rate over 1Hz in surgery. Discussion: This work demonstrated that a lightfield hyperspectral imaging system not only meets the design criteria and specifications outlined in an IDEAL-0 (pre-clinical) study, but also that it can translate into clinical practice as illustrated by a successful first in human study (IDEAL 1). This opens doors for further development and optimisation, given the increasing evidence that hyperspectral imaging can provide live, wide-field, and label-free intra-operative imaging and tissue differentiation.

20.
Adv Mater ; 35(41): e2306517, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37643539

RESUMO

The brightness of doped luminescent materials is usually limited by the ubiquitous concentration quenching phenomenon resulting in an intractable tradeoff between internal quantum efficiency and excitation efficiency. Here, an intrinsic suppression of concentration quenching in sensitized luminescent systems, by exploiting the competitive relationship between light emitters and quenchers in trapping excitation energies from sensitizers, is reported. Although Cr3+ sensitizers and trivalent lanthanide (Ln3+ , Ln = Yb, Nd, and Er) emitters themselves are highly susceptible to concentration quenching, the unprecedentedly high-brightness luminescence of Cr3+ -Ln3+ systems is demonstrated in the short-wave infrared (SWIR) range employing high concentrations of Cr3+ , whereby a record photoelectric efficiency of 23% is achieved for SWIR phosphor-converted light-emitting diodes, which is about twice as high as those previously reported. The results underscore the beneficial role of emitters in terminating excitation energies, opening up a new dimension for developing efficient sensitized luminescent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA