Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neurol India ; 72(1): 102-109, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38443010

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelinating lesions in the white matter of the central nervous system. Studies have shown that exercise is beneficial for multiple sclerosis (MS). However, the molecular basis is largely unknown. MATERIALS AND METHODS: We integrated multiple blood and hippocampus transcriptome data from subjects with physical activity or MS. Transcription change associations between physical activity and MS were analyzed with bioinformatic methods including GSEA (Gene Set Enrichment Analysis) and GO (Gene Ontology) analysis. RESULTS: We find that exercise can specifically reverse immune-related genes in the hippocampus of MS patients, while this effect is not observable in blood. Moreover, many of these reversed genes encode immune-related receptors. Interestingly, higher levels of physical activity have more pronounced effects on the reversal of MS-related transcripts. CONCLUSIONS: The immune-response related genes or pathways in the hippocampus may be the targets of exercise in alleviating MS conditions, which may offer new therapeutic clues for MS.


Assuntos
Doenças Autoimunes , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/genética , Hipocampo , Exercício Físico
2.
Ginekol Pol ; 95(4): 266-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334340

RESUMO

Recurrent miscarriage, poses a significant challenge for many couples globally, the causes of which are not fully understood. Recent studies have shown the intricate link between uterine inflammation and recurrent miscarriages. While inflammation is essential during early pregnancy stages, especially in embryo implantation, an imbalance can lead to miscarriage. Key inflammatory mediators and an imbalance in immune cells can significantly alter and contribute to recurrent miscarriages. Lifestyle factors like smoking and obesity exacerbate inflammatory responses, increasing miscarriage risks. Understanding the interaction between the uterine environment, immune cell imbalances, and recurrent miscarriages is essential for devising effective treatments. This paper presents the latest data on inflammation's role in recurrent miscarriage, emphasizing the significance of diagnosing chronic endometritis and immune imbalances, offering practical recommendations for treatment and diagnosis.


Assuntos
Aborto Habitual , Humanos , Feminino , Aborto Habitual/imunologia , Aborto Habitual/terapia , Aborto Habitual/prevenção & controle , Gravidez , Inflamação/imunologia , Útero/imunologia , Endometrite/imunologia , Endometrite/terapia
3.
Biochim Biophys Acta Gene Regul Mech ; 1865(8): 194875, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208849

RESUMO

Heterogeneous nuclear ribonucleoprotein A1 and A2 (hnRNP A1/2) is a ubiquitously expressed RNA binding protein known to bind intronic or exonic splicing silencer. Binding of hnRNP A1/2 to survival of motor neuron gene (SMN1/2) exon 7 and flanking sequences strongly inhibits the inclusion of exon 7, which causes spinal muscular atrophy, a common genetic disorder. However, the role of hnRNP A1/2 on the side away from exon 7 is unclear. Here using antisense oligonucleotides, we fished an intronic splicing enhancer (ISE) near the 3'-splice site (SS) of intron 7 of SMN1/2. Mutagenesis identified the efficient motif of the ISE as "UAGUAGG", coupled with RNA pull down and protein overexpression, we proved that hnRNP A1/2 binding to the ISE promotes the inclusion of SMN1/2 exon 7. Using MS2-tethering array and "UAGGGU" motif walking, we further uncovered that effects of hnRNP A1/2 on SMN1/2 exon 7 splicing are position-dependent: exon 7 inclusion is inhibited when hnRNP A1/2 binds proximal to the 5'SS of intron 7, promoted when its binds proximal to the 3'SS. These data provide new insights into the splicing regulatory mechanism of SMN1/2.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Ribonucleoproteína Nuclear Heterogênea A1/genética , Splicing de RNA/genética , Éxons/genética , Íntrons/genética
4.
PLoS Genet ; 18(9): e1010392, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074806

RESUMO

Although spinal muscular atrophy (SMA) is a motor neuron disease caused by the loss of survival of motor neuron (SMN) proteins, there is growing evidence that non-neuronal cells play important roles in SMA pathogenesis. However, transcriptome alterations occurring at the single-cell level in SMA spinal cord remain unknown, preventing us from fully comprehending the role of specific cells. Here, we performed single-cell RNA sequencing of the spinal cord of a severe SMA mouse model, and identified ten cell types as well as their differentially expressed genes. Using CellChat, we found that cellular communication between different cell types in the spinal cord of SMA mice was significantly reduced. A dimensionality reduction analysis revealed 29 cell subtypes and their differentially expressed gene. A subpopulation of vascular fibroblasts showed the most significant change in the SMA spinal cord at the single-cell level. This subpopulation was drastically reduced, possibly causing vascular defects and resulting in widespread protein synthesis and energy metabolism reductions in SMA mice. This study reveals for the first time a single-cell atlas of the spinal cord of mice with severe SMA, and sheds new light on the pathogenesis of SMA.


Assuntos
Neurônios Motores , Atrofia Muscular Espinal , Animais , Modelos Animais de Doenças , Camundongos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Análise de Sequência de RNA , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
5.
Adv Sci (Weinh) ; 9(29): e2203040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986392

RESUMO

The effective treatment of advanced cervical cancer remains challenging. Herein, single-nucleus RNA sequencing (snRNA-seq) and SpaTial enhanced resolution omics-sequencing (Stereo-seq) are used to investigate the immunological microenvironment of cervical squamous cell carcinoma (CSCC). The expression levels of most immune suppressive genes in the tumor and inflammation areas of CSCC are not significantly higher than those in the non-cancer samples, except for LGALS9 and IDO1. Stronger signals of CD56+ NK cells and immature dendritic cells are found in the hypermetabolic tumor areas, whereas more eosinophils, immature B cells, and Treg cells are found in the hypometabolic tumor areas. Moreover, a cluster of pro-tumorigenic cancer-associated myofibroblasts (myCAFs) are identified. The myCAFs may support the growth and metastasis of tumors by inhibiting lymphocyte infiltration and remodeling of the tumor extracellular matrix. Furthermore, these myCAFs are associated with poorer survival probability in patients with CSCC, predict resistance to immunotherapy, and might be present in a small fraction (< 30%) of patients with advanced cancer. Immunohistochemistry and multiplex immunofluorescence staining are conducted to validate the spatial distribution and potential function of myCAFs. Collectively, these findings enhance the understanding of the immunological microenvironment of CSCC and shed light on the treatment of advanced CSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Tecido Conjuntivo , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , RNA Nuclear Pequeno , Análise de Sequência de RNA , Transcriptoma/genética , Microambiente Tumoral/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
6.
Clin Transl Med ; 12(8): e886, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917402

RESUMO

BACKGROUND: The exact animal origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains obscure and understanding its host range is vital for preventing interspecies transmission. METHODS: Herein, we applied single-cell sequencing to multiple tissues of 20 species (30 data sets) and integrated them with public resources (45 data sets covering 26 species) to expand the virus receptor distribution investigation. While the binding affinity between virus and receptor is essential for viral infectivity, understanding the receptor distribution could predict the permissive organs and tissues when infection occurs. RESULTS: Based on the transcriptomic data, the expression profiles of receptor or associated entry factors for viruses capable of causing respiratory, blood, and brain diseases were described in detail. Conserved cellular connectomes and regulomes were also identified, revealing fundamental cell-cell and gene-gene cross-talks from reptiles to humans. CONCLUSIONS: Overall, our study provides a resource of the single-cell atlas of the animal kingdom which could help to identify the potential host range and tissue tropism of viruses and reveal the host-virus co-evolution.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/genética , Especificidade de Hospedeiro , Humanos , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Front Cell Neurosci ; 16: 942976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035257

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disorder with an incidence of 1/6,000-1/10,000 and is the leading fatal disease among infants. Previously, there was no effective treatment for SMA. The first effective drug, nusinersen, was approved by the US FDA in December 2016, providing hope to SMA patients worldwide. The drug was introduced in the European Union in 2017 and China in 2019 and has so far saved the lives of several patients in most parts of the world. Nusinersen are fixed sequence antisense oligonucleotides with special chemical modifications. The development of nusinersen progressed through major scientific discoveries in medicine, genetics, biology, and other disciplines, wherein several scientists have made substantial contributions. In this article, we will briefly describe the pathogenesis and therapeutic strategies of SMA, summarize the timeline of important scientific findings during the development of nusinersen in a detailed, scientific, and objective manner, and finally discuss the implications of the development of nusinersen for SMA research.

8.
Cell Rep ; 39(12): 110979, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732129

RESUMO

Vertebrate evolution was accompanied by two rounds of whole-genome duplication followed by functional divergence in terms of regulatory circuits and gene expression patterns. As a basal and slow-evolving chordate species, amphioxus is an ideal paradigm for exploring the origin and evolution of vertebrates. Single-cell sequencing has been widely used to construct the developmental cell atlas of several representative species of vertebrates (human, mouse, zebrafish, and frog) and tunicates (sea squirts). Here, we perform single-nucleus RNA sequencing (snRNA-seq) and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) for different stages of amphioxus (covering embryogenesis and adult tissues). With the datasets generated, we constructed a developmental tree for amphioxus cell fate commitment and lineage specification and characterize the underlying key regulators and genetic regulatory networks. The data are publicly available on the online platform AmphioxusAtlas.


Assuntos
Anfioxos , Animais , Cromatina/genética , Expressão Gênica , Genoma , Anfioxos/genética , Camundongos , Peixe-Zebra/genética
10.
Cell Mol Neurobiol ; 42(8): 2629-2642, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34704168

RESUMO

Glial cells, including astrocytes, oligodendrocytes, and microglia, are the major components in the central nervous system (CNS). Studies have revealed the heterogeneity of each glial cell type and that they each may play distinct roles in physiological processes and/or neurological diseases. Single-cell sequencing (scRNA-seq) technology developed in recent years has extended our understanding of glial cell heterogeneity from the perspective of transcriptome profiling. This review summarizes the marker genes of major glial cells in the CNS and reveals their heterogeneity in different species, CNS regions, developmental stages, and pathological states (Alzheimer's disease and spinal cord injury), expanding our knowledge of glial cell heterogeneity on both molecular and functional levels.


Assuntos
Neuroglia , Transcriptoma , Astrócitos/metabolismo , Sistema Nervoso Central , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Transcriptoma/genética
11.
Nat Commun ; 12(1): 7083, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873160

RESUMO

The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.


Assuntos
Atlas como Assunto , Análise de Célula Única/veterinária , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Aves , Comunicação Celular , Evolução Molecular , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Pulmão/citologia , Pulmão/metabolismo , Pulmão/virologia , Mamíferos , Receptores Virais/genética , Receptores Virais/metabolismo , Répteis , SARS-CoV-2/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transcriptoma , Tropismo Viral , Internalização do Vírus
12.
Integr Cancer Ther ; 20: 15347354211031650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34261372

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) is widely integrated into cancer care in China. An overview in 2011 identified 2384 randomized and non-randomized controlled trials (RCTs, non-RCTs) on TCM for cancer published in the Chinese literature. This article summarizes updated evidence of RCTs on TCM for cancer care. METHODS: We searched 4 main Chinese databases: China National Knowledge Infrastructure, Chinese Scientific Journal Database, SinoMed, and Wanfang. RCTs on TCM used in cancer care were analyzed in this bibliometric study. RESULTS: Of 5834 RCTs (477 157 cancer patients), only 62 RCTs were indexed in MEDLINE. The top 3 cancers treated were lung, stomach, and breast cancer. About 4752 RCTs (81.45%) tested TCM combined with conventional treatment, and 1082 RCTs (18.55%) used TCM alone for treating symptoms and side-effects. Herbal medicine was the most frequently used TCM modality (5087 RCTs; 87.20%). The most frequently reported outcome was symptom improvement (3712 RCTs; 63.63%) followed by quality of life (2725 RCTs; 46.71%), and biomarkers (2384 RCTs; 40.86%). The majority of RCTs (4051; 69.44%) concluded there were beneficial effects using either TCM alone or TCM plus conventional treatment compared with conventional treatment. CONCLUSION: Substantial randomized trials demonstrated different types/stages of cancer were treated by various TCM modalities, alone or in combination with conventional medicine. Further evaluation on the effects and safety of TCM modalities focusing on outcomes such as quality of life is required.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , China , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Medicina Tradicional Chinesa , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Nat Commun ; 12(1): 4543, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315889

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here we collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles, we report a trans-omics landscape for COVID-19. Our analyses find neutrophils heterogeneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-activation, arginine depletion and tryptophan metabolites accumulation correlate with T cell dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood from COVID-19 patients may thus help provide clues regarding pathophysiology of and potential therapeutic strategies for COVID-19.


Assuntos
COVID-19/genética , COVID-19/metabolismo , Estado Terminal , Genômica/métodos , Humanos , Lipidômica/métodos , Metabolômica/métodos , Neutrófilos/metabolismo , Transcriptoma/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-34211575

RESUMO

Antisense nucleic acids are single-stranded oligonucleotides that have been specially chemically modified, which can bind to RNA expressed by target genes through base complementary pairing and affect protein synthesis at the level of posttranscriptional processing or protein translation. In recent years, the application of antisense nucleic acid technology in the treatment of neuromuscular diseases has made remarkable progress. In 2016, the US FDA approved two antisense nucleic acid drugs for the treatment of Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), and the development to treat other neurodegenerative diseases has also entered the clinical stage. Therefore, ASO represents a treatment with great potential. The article will summarize ASO therapies in terms of mechanism of action, chemical modification, and administration methods and analyze their role in several common neurodegenerative diseases, such as SMA, DMD, and amyotrophic lateral sclerosis (ALS). This article systematically summarizes the great potential of antisense nucleic acid technology in the treatment of hereditary neurodegenerative diseases.

15.
Turk J Biol ; 45(2): 187-195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907500

RESUMO

Heterogeneous nuclear ribonucleoprotein (HNRNP) A1 and A2 are the most abundant HNRNPs with nearly identical functions, and play important roles in regulating gene expression at multiple levels (i.e. transcription, posttranscription, and translation). However, the expression and regulation mechanism of HNRNPA1 and A2 themselves remain unclear. In this study, the amino acid sequences of HNRNPA1 and HNRNPA2 were compared and found to have 78% and 86% homology in key functional domains. Transfection of HEK293 cells with small interfering RNA and overexpression vectors of HNRNPA1 and HNRNPA2 demonstrated that HNRNPA1 and HNRNPA2 paralogs regulate each other's expression in a compensatory manner at both the RNA and protein levels. Multiprimer reverse transcription-polymerase chain reaction showed that HNRNPA1 and HNRNPA2 did not affect splicing of the HNRNPA2 and HNRNPA1 gene. Using luciferase reporting system, we found that compensatory degradation was mediated by the 3'UTR of the two genes rather than by the promoter. Moreover, treatment with cycloheximide inhibited the compensatory regulation. Our results indicate a novel regulation mechanism of HNRNPA1 and A2 expression. Through compensatory regulation, the expression levels of HNRNPA1 and HNRNPA2 are strictly controlled within a certain range to maintain normal cellular activities under different physiological conditions.

16.
J Genet Genomics ; 48(2): 147-162, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33926839

RESUMO

Olfaction, the sense of smell, is a fundamental trait crucial to many species. The olfactory bulb (OB) plays pivotal roles in processing and transmitting odor information from the environment to the brain. The cellular heterogeneity of the mouse OB has been studied using single-cell RNA sequencing. However, the epigenetic landscape of the mOB remains mostly unexplored. Herein, we apply single-cell assay for transposase-accessible chromatin sequencing to profile the genome-wide chromatin accessibility of 9,549 single cells from the mOB. Based on single-cell epigenetic signatures, mOB cells are classified into 21 clusters corresponding to 11 cell types. We identify distinct sets of putative regulatory elements specific to each cell cluster from which putative target genes and enriched potential functions are inferred. In addition, the transcription factor motifs enriched in each cell cluster are determined to indicate the developmental fate of each cell lineage. Our study provides a valuable epigenetic data set for the mOB at single-cell resolution, and the results can enhance our understanding of regulatory circuits and the therapeutic capacity of the OB at the single-cell level.


Assuntos
Cromatina/genética , Bulbo Olfatório/metabolismo , Animais , Linhagem da Célula , Cromatina/metabolismo , Análise por Conglomerados , Epigênese Genética , Epigenômica , Redes Reguladoras de Genes , Camundongos , Motivos de Nucleotídeos , Bulbo Olfatório/citologia , Elementos Reguladores de Transcrição , Análise de Célula Única , Fatores de Transcrição/metabolismo , Vírus/genética
17.
J Cell Physiol ; 236(6): 4496-4514, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33319931

RESUMO

Alternative splicing (AS) presents a key posttranscriptional regulatory mechanism associated with numerous physiological processes. However, little is known about its role in skeletal muscle atrophy. In this study, we used a rat model of denervated skeletal muscle atrophy and performed RNA-sequencing to analyze transcriptome profiling of tibialis anterior muscle at multiple time points following denervation. We found that AS is a novel mechanism involving muscle atrophy, which is independent changes at the transcript level. Bioinformatics analysis further revealed that AS transitions are associated with the appearance of the atrophic phenotype. Moreover, we found that the inclusion of multiple highly conserved exons of Obscn markedly increased at 3 days after denervation. In addition, we confirmed that this newly transcript inhibited C2C12 cell proliferation and exacerbated myotube atrophy. Finally, our study revealed that a large number of RNA-binding proteins were upregulated when the atrophy phenotype appeared. Our data emphasize the importance of AS in this process.


Assuntos
Processamento Alternativo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Camundongos , Denervação Muscular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , RNA-Seq , Ratos Sprague-Dawley , Nervo Isquiático/cirurgia , Fatores de Tempo
18.
Sci Bull (Beijing) ; 66(14): 1448-1461, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654371

RESUMO

The brain of the domestic pig (Sus scrofa domesticus) has drawn considerable attention due to its high similarities to that of humans. However, the cellular compositions of the pig brain (PB) remain elusive. Here we investigated the single-nucleus transcriptomic profiles of five regions of the PB (frontal lobe, parietal lobe, temporal lobe, occipital lobe, and hypothalamus) and identified 21 cell subpopulations. The cross-species comparison of mouse and pig hypothalamus revealed the shared and specific gene expression patterns at the single-cell resolution. Furthermore, we identified cell types and molecular pathways closely associated with neurological disorders, bridging the gap between gene mutations and pathogenesis. We reported, to our knowledge, the first single-cell atlas of domestic pig cerebral cortex and hypothalamus combined with a comprehensive analysis across species, providing extensive resources for future research regarding neural science, evolutionary developmental biology, and regenerative medicine.

19.
Inflammation ; 43(5): 1692-1706, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32440987

RESUMO

Periodontitis is a dental plaque-induced chronic inflammatory disease. Long-term exposure of the host to periodontal pathogens leads to a hyporesponsive state to the following stimulations, which is described as endotoxin tolerance. Neutrophils are the most abundant innate immune cells in the body. To clarify the roles of endotoxin tolerance in periodontitis, inflammatory responses in Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS)-tolerized neutrophils were explored in this study. Here, apoptosis and respiratory burst in neutrophils upon single or repeated P. gingivalis LPS stimulations were explored by flow cytometry. Cytokine production (TNF-α, IL-8, and IL-10) in tolerized neutrophils or neutrophils co-cultured with peripheral blood mononuclear cells was determined by ELISA. Phagocytosis of P. gingivalis by tolerized neutrophils was also assayed by flow cytometry. In addition, quality and quantitation of neutrophil extracellular trap (NET) formation were detected using immunofluorescence microscope and microplate reader, respectively. The protein expressions of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) were examined to identify possible mechanisms for the abovementioned changes. Tolerance induced by P. gingivalis LPS significantly suppressed apoptosis, reactive oxygen species (ROS) generation, and phagocytosis in neutrophils (p < 0.05). In both neutrophils alone and co-culture system, repeated P. gingivalis LPS stimulations significantly decreased TNF-α production, but increased IL-10 secretion (p < 0.05). Moreover, in tolerized neutrophils, NET formations were strengthened and there were more released extracellular DNA (p < 0.05). In P. gingivalis LPS-tolerized neutrophils, phosphorylation of ERK1/2 was suppressed compared with that in non-tolerized cells. Taken together, immune responses in neutrophils were reprogrammed by P. gingivalis LPS-induced tolerance, which might be related with the development of inflammation in periodontal tissues. Moreover, ERK1/2 might play important roles in endotoxin tolerance triggered by P. gingivalis LPS.


Assuntos
Endotoxinas/toxicidade , Tolerância Imunológica/imunologia , Mediadores da Inflamação/imunologia , Lipopolissacarídeos/toxicidade , Neutrófilos/imunologia , Porphyromonas gingivalis , Animais , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/metabolismo , Células Cultivadas , Técnicas de Cocultura , Humanos , Tolerância Imunológica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Ovinos
20.
Ann Transl Med ; 7(18): 456, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31700892

RESUMO

BACKGROUND: Skeletal muscle atrophy, characterized by accelerated protein degradation, occurs in such conditions as unloading, immobilization, fasting, and denervation. Effective treatments for skeletal muscle atrophy are not yet available. Considering that microRNAs (miRs) may play an important role in the regulation of muscle atrophy, in the present study, we aimed to examine the effect of miR-125b-5p-based therapeutic strategies on skeletal muscle atrophy, and to explore the underlying mechanisms. METHODS: Fasting-induced atrophic mouse C2C12 myotubes and denervated rat tibialis anterior (TA) muscles were used as in vitro and in vivo models of skeletal muscle atrophy, respectively. The morphological parameters of skeletal muscle were measured by immunostaining-based quantification. The interaction between miR-125b-5p and TRAF6 3'-UTR was detected by luciferase reporter analysis. The mRNA and protein expressions were determined by real-time qPCR and Western blot analysis respectively. The miR mimics/agomir and miR inhibitor/antagomir were transfected into C2C12 myotubes and TA muscles respectively to alter the expression of miR-125b-5p. RESULTS: The expression of miR-125b-5p was down-regulated in both atrophic C2C12 myotubes and denervated TA muscles. The interaction between miR-125b-5p and TRAF6 3'-UTR was identified. Overexpression of miR-125b-5p protected skeletal muscle samples from atrophy in vitro and in vivo by targeting TRAF6 through inactivation of several ubiquitin-proteasome system (UPS)- and autophagy-lysosome system (ALS)-related proteins. CONCLUSIONS: Overexpression of miR-125b-5p may provide a promising therapeutic approach to treat muscle atrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA