Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Sci Nutr ; 8(11): 5776-5784, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282230

RESUMO

Blueberry is an important agricultural crop with high nutritional, health, and economic value. Despite the well-studied blueberry cultivation methods and soil requirements, little is known about how beneficial bacteria function in organic blueberry cultivation systems and their effects on acidic soils. In this study, a single bacteria Bacillus amyloliquefaciens JC65 and three biocontrol bacteria consortiums containing JC65 were applied to organic system. The effect of bacteria to blueberry growth, yield, fruit quality, and soil quality was investigated. A consortium of three mixed Bacillus (B. amyloliquefaciens JC65, B. licheniforims HS10 and B. subtilis 7ze3) showed the highest growth improvement efficiency. The bacterial inoculation increased blueberry leaf chlorophyll content, net photosynthetic rate by 21.50%, 13.21% at 30 days, and increased average plant height by 2.72% at 69 days. Compared with the control, the inoculated plants showed an increased yield of 14.56%. Interestingly, blueberry fruit quality was also improved with supplement of the bacterial consortium. Fruit anthocyanin, soluble sugar, vitamin C, soluble solids, and soluble protein content were increased by 5.99%, 4.21%, 17.31%, 2.41%, and 21.65%, respectively. Besides, beneficial bacterial consortium also enables sustainable agriculture by improving soil ammonium nitrogen and organic matter by 3.77% and 2.96% after blueberry planting. In conclusion, the combination of beneficial bacteria showed a synergistic activity in organic system to promote the blueberry yield, fruit quality, and soil nutrient preservation.

2.
Ying Yong Sheng Tai Xue Bao ; 25(5): 1468-74, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25129950

RESUMO

Bacterial consortium EG03, consisted of several different antagonistic bacteria against Ralstonia solanacearum, was demonstrated to efficiently control bacterial wilt of pepper in field with a biocontrol efficacy of 85.8%. The traditional dilution plate method, the most probable number (MPN) method and Biolog system were adopted to determine effects of EG03 on characteristics of microbial community in pepper rhizosphere. It's shown that EGO3's effects on microbial community in pepper rhizospheric soil varied with time. There were an increase in the number of fungus and Bacillus spp. to some extent and a significant increase in that of nitrogen-fixing bacteria. Biolog analysis showed that the curve between average well color development (AWCD) and incubation time was S-shaped for all the treatments and that the AWCD of pepper rhizospheric soil at the early stage was higher than at the late stage. The analysis of carbon source utilization showed that EG03 decreased microbial utilization of carbon source in short-term, and the microbial community of pepper rhizospheric soil at the late stage composed mainly of microbes depended on sugars as carbon resource. EG03 treatment could decrease the five microbial diversity indices of rhizospheric microbes in short term, then increased those indices instead, especially with significant (P < 0.05) increases in Simpson index and McIntosh evenness.


Assuntos
Agentes de Controle Biológico , Consórcios Microbianos , Doenças das Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Bactérias , Capsicum/microbiologia , Carbono , Fungos , Nitrogênio , Ralstonia solanacearum/patogenicidade , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA