Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 108(2): 348-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37443398

RESUMO

Stalk rot is one of the most destructive and widely distributed diseases in maize plants worldwide. Research on the performance and resistance mechanisms of maize against stem rot is constantly improving. In this study, among 120 inbred maize lines infected by Fusarium graminearum using the injection method, 4 lines (3.33%) were highly resistant to stalk rot, 28 lines (23.33%) were resistant, 57 lines (47.50%) were susceptible, and 31 lines (25.84%) were highly susceptible. The inbred lines 18N10118 and 18N10370 were the most resistant and susceptible with disease indices of 7.5 and 75.6, respectively. Treatment of resistant and susceptible maize inbred seedlings with F. graminearum showed that root hair growth of the susceptible inbred lines was significantly inhibited, and a large number of hyphae attached and adsorbed multiple conidia near the root system. However, the resistant inbred lines were delayed and inconspicuous, with only a few hyphae and spores appearing near the root system. Compared with susceptible inbred lines, resistant maize inbred line seedlings treated with F. graminearum exhibited elevated activities of catalase, phenylalanine ammonia-lyase, polyphenol oxidase, and superoxide dismutase. We identified 153 genes related to disease resistance by transcriptome analysis. The mitogen-activated protein kinase signaling and peroxisome pathways mainly regulated the resistance mechanism of maize inbred lines to F. graminearum infection. These two pathways might play an important role in the disease resistance mechanism, and the function of genes in the two pathways must be further studied, which might provide a theoretical basis for further understanding the molecular resistance mechanism of stalk rot and resistance gene mining.


Assuntos
Resistência à Doença , Fusarium , Resistência à Doença/genética , Zea mays/genética , Fusarium/fisiologia , Perfilação da Expressão Gênica
2.
Front Plant Sci ; 12: 773090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899800

RESUMO

Sour or wild jujube fruits and dried seeds are popular food all over the world. In this study, we reported a high-quality genome assembly of sour jujube (Ziziphus jujuba Mill. var. spinosa), with a size of 406 Mbp and scaffold N50 of 30.3 Mbp, which experienced only γ hexaploidization event, without recent genome duplication. Population structure analysis identified four jujube subgroups (two domesticated ones, i.e., D1 in West China and D2 in East/SouthEast China, semi-wild, and wild), which underwent an evolutionary history of a significant decline of effective population size during the Last Glacial Period. The respective selection signatures of three subgroups were discovered, such as strong peaks on chromosomes #3 in D1, #1 in D2, and #4 in wild. Genes under the most significant selection on chromosomes #4 in wild were confirmed to be involved in fruit variations among jujube accessions, in transcriptomic analysis. Our study offered novel insights into the jujube population structure and domestication and provided valuable genomic resources for jujube improvement in stress response and fruit flavor in the future.

3.
Int J Nanomedicine ; 13: 1773-1789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29606870

RESUMO

BACKGROUND: In order to achieve drug targeting and controlled release, we have successfully developed a novel drug release system DOX/AuNCs-PM-HA with gold nanocages (AuNCs) as photothermal cores, thermally responsive copolymer P(NIPAM-co-Am) (PM) as the near-infrared (NIR) stimuli gatekeeper and hyaluronic acid as a targeting ligand as well as a capping agent. METHODS: Cell uptake and cell viability were investigated. In vivo photoacoustic tomography imaging in H22 tumor bearing mice was analyzed for the tumor targeting effect of the nanocomplexes. Antitumor efficacy and the tissue distribution in vivo were investigated. RESULTS: In vitro results demonstrated that the DOX/AuNCs-PM-HA had significant anticancer activity against SMMC-7721 cells under NIR irradiation. Furthermore, in vivo photoacoustic tomography imaging of the nanocomplexes in H22 tumor bearing mice could indicate effective tumor targeting. Our studies on antitumor efficacy and the tissue distribution in vivo showed that many DOX/AuNCs-PM-HA nanocomplexes could efficiently accumulate at the tumor site so that they could inhibit the tumor growth effectively with limited side effects. The in vitro and in vivo results confirmed that the tumor-targeting and controlled-release drug system DOX/AuNCs-PM-HA with the combination of chemotherapy and photothermal therapy showed strong anti-tumor effect and would have great potential for future cancer therapy. CONCLUSION: This tumor targeting DOX/AuNCs-PM-HA nanocomplex responded not only to the external stimuli of NIR, but also the internal stimuli of hyaluronidase, providing the potential for pinpointed and multi-stimuli responsive intracellular drug release.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Nanoestruturas/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/uso terapêutico , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Ouro/química , Humanos , Ácido Hialurônico/química , Camundongos , Nanoestruturas/administração & dosagem , Técnicas Fotoacústicas/métodos , Polímeros/química , Distribuição Tecidual , Tomografia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA