Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365242

RESUMO

An estimated 258 million tons of plastic enter the soil annually. Joining persistent types of microplastic (MP), there will be an increasing demand for biodegradable plastics. There are still many unknowns about plastic pollution by either type, and one large gap is the fate and composition of dissolved organic matter (DOM) released from MPs as well as how they interact with soil microbiomes in agricultural systems. In this study, polyethylene MPs, photoaged to different degrees, and virgin polylactic acid MPs were added to agricultural soil at different levels and incubated for 100 days to address this knowledge gap. We find that, upon MP addition, labile components of low aromaticity were degraded and transformed, resulting in increased aromaticity and oxidation degree, reduced molecular diversity, and changed nitrogen and sulfur contents of soil DOM. Terephthalate, acetate, oxalate, and L-lactate in DOM released by polylactic acid MPs and 4-nitrophenol, propanoate, and nitrate in DOM released by polyethylene MPs were the major molecules available to the soil microbiomes. The bacteria involved in the metabolism of DOM released by MPs are mainly concentrated in Proteobacteria, Actinobacteriota, and Bacteroidota, and fungi are mainly in Ascomycota and Basidiomycota. Our study provides an in-depth understanding of the microbial transformation of DOM released by MPs and its effects of DOM evolution in agricultural soils.


Assuntos
Matéria Orgânica Dissolvida , Solo , Microplásticos , Plásticos , Polietileno
2.
Water Res ; 251: 121173, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281334

RESUMO

Particulate organic matter (POM), as an important component of organic matter, can act as a redox mediator and thus intervene in the environmental behavior of microplastics (MPs). However, quantitative information on the role of POM in the photoaging of MPs under ultraviolet (UV) light is still lacking. To raise the knowledge gap, through environmental simulation experiments and qualitative/quantitative experiments of active substances, we found that POM from peat soil has stronger oxidation capacity than POM from sediment, and the involvement of POM at high water content makes the aging of MPs more obvious. This is because the persistent radicals and electron-absorbing groups on the surface of POM indirectly generate reactive oxygen species (ROS) by promoting electron transfer, and the dissolved organic matter (DOM) released from POM under UV light (POM-DOM) is further excited to generate triplet-state photochemistry of DOM (3DOM*) to promote the aging of MPs. Theoretical calculations revealed that the benzene ring, mainly C = C, and C = O in the main chain in the plastic macromolecule structure are more susceptible to ROS attack, and the differences in the vulnerable sites contained in different plastic structures as well as the differences in the energy band gaps lead to differences in their aging processes. This study firstly elucidates the key role and intrinsic mechanism of POM in the photoaging of MPs, providing a theoretical basis for a comprehensive assessment of the effect of POM on MPs in the environment.


Assuntos
Material Particulado , Envelhecimento da Pele , Material Particulado/análise , Microplásticos , Plásticos , Espécies Reativas de Oxigênio , Solo
3.
J Hazard Mater ; 466: 133605, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286052

RESUMO

While land-based sources have been recognized as significant long-term sinks for micro- and nanoplastics, there is limited knowledge about the uptake, translocation, and phytotoxicity of nanoplastics (NPs) in terrestrial environments, especially aged NPs. In this study, we investigated the impact of aged polystyrene nanoplastics (PSNPs) on the uptake, physiology, and metabolism of spinach. Our findings revealed that both pristine and aged PSNPs can accumulate in the roots and subsequently translocate to the aboveground tissues, thereby influencing numerous key growth indicators in spinach plants. A more pronounced impact was observed in the treatment of aged PSNPs, triggering more significant and extensive changes in metabolite levels. Furthermore, alterations in targeted pathways, specifically aminoacyl-tRNA biosynthesis and phenylpropanoid biosynthesis, were induced by aged PSNPs, while pristine PSNPs influenced pathways related to sulfur metabolism, biosynthesis of unsaturated fatty acids, and tryptophan metabolism. Additionally, tissue-specific responses were observed at the metabolomics level in both roots and leaves. These results highlight the existence of diverse and tissue-specific metabolic responses in spinach plants exposed to pristine and aged PSNPs, providing insights into the mechanisms of defense and detoxification against NP-induced stress.


Assuntos
Microplásticos , Poliestirenos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Spinacia oleracea , Metabolômica , Transporte Biológico
4.
J Hazard Mater ; 451: 131123, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871465

RESUMO

The aging of microplastics (MPs) occurs extensively in the environment, and understanding the aging mechanisms of MPs is essential to study the properties, fate and environmental impact of MPs. We proposed a creative hypothesis that polyethylene terephthalate (PET) can be aged by reducing reactions with reducing agents. Simulation experiments based on the principle of reduction of carbonyl by NaBH4 were conducted to test the correctness of this hypothesis. The results showed that after 7 days of experiments, physical damage and chemical transformation occurred in the PET-MPs. The particle size of MPs was reduced by 34.95-55.93 %, and the C/O ratio was increased by 2.97-24.14 %. The changing order of surface functional groups (CO > C-O > C-H > C-C) was obtained. The occurrence of reductive aging and electron transfer of MPs was further supported by electrochemical characterization experiments. These results together reveal the reductive aging mechanism of PET-MPs: CO is firstly reduced to C-O by BH4- attack, and then further reduced to ·R. The resulting ·R recombines to form new C-H and C-C. This study is beneficial to deepen the understanding of the chemical aging of MPs, and can provide a theoretical basis for further research on the reactivity of oxygenated MPs with reducing agents.

5.
Environ Sci Technol ; 56(14): 10149-10160, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793149

RESUMO

Microplastics (MPs) interact frequently with dissolved organic matter (DOM) commonly found in the environment, but information on the aging behavior of MPs under the participation of DOM is still lacking. Thus, the polystyrene microplastic (PSMP) aging process with DOM participation was systematically studied by electron paramagnetic resonance spectroscopy, high-performance liquid chromatography, Fourier transform infrared (FTIR) spectroscopy, and two-dimensional correlation spectroscopy analyses under dark and ultraviolet (UV) light conditions. DOM was found to promote electron transfer to generate reactive oxygen species (ROS) under dark conditions and the aging of PSMPs, while the process of DOM generating ROS under UV light was more susceptible to photoelectrons and accelerated the aging process of PSMPs. However, among the four DOM types, fulvic acid (FA) has a more significant promoting effect on the aging process of PSMPs than humic acid, which can be attributed to the stronger conversion ability of FA to semiquinone radicals. Density functional theory calculations are used to describe the difference in the aging process of different structures of plastics with the participation of DOM. This study provides a necessary theoretical basis for the study of the migration of MPs in groundwater and deep surface water.


Assuntos
Microplásticos , Plásticos , Matéria Orgânica Dissolvida , Substâncias Húmicas/análise , Poliestirenos , Espécies Reativas de Oxigênio , Raios Ultravioleta
6.
J Hazard Mater ; 435: 128994, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35490633

RESUMO

Nanoplastics (NPs), which are often detected in the natural environment, are regarded as a group of emerging pollutants. Hematite is a substance that exists widely in the surface environment and has an important impact on the environmental behavior of pollutants. Clarifying the migration of NPs requires an in-depth understanding of intrinsic interaction mechanisms of NPs with iron-containing minerals. The interaction process of polystyrene nanoplastics (PSNPs) on the hematite exposed facets was systematically studied by experiments under different conditions, adsorption isotherm curves, Fourier Transform infrared (FTIR) spectroscopy and two-dimensional correlation spectroscopy (2D-COS) analyses. We found that PSNPs were adsorbed on the three exposed faces of hematite ({001}, {012}, and {100}) by electrostatic interaction, respectively, but the capacities for PSNPs were different. Adsorption models were established to explore the preferred interaction surface dependent on the exposed facets, and it was found that {012} surfaces were more favorable for PSNPs adsorption, while {001} surface has better adsorption capacity for PSNPs than {100} surface, which is due to the different density and proportion of hydroxyl groups on the exposed facets of hematite. These findings elucidated the dependence of PSNPs adsorption on the hematite facets, and illustrated t the effect of hematite on the migration of PSNPs in the environment.


Assuntos
Poluentes Ambientais , Nanopartículas , Adsorção , Compostos Férricos , Ferro , Microplásticos , Óxidos , Poliestirenos
7.
Sci Total Environ ; 825: 153918, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189224

RESUMO

Microplastics (MPs) could be as a vector to colonize microorganisms and antibiotic resistance gene (ARGs) in surface water. However, little information is known regarding their changes by the presence of MPs in wastewater treatment. Here, the effects of different concentrations and sizes of polystyrene microplastics (PSMPs) on the distribution and removal of microbial communities and ARGs under ultraviolet disinfection of urban sewage have been systematically studied. Results showed that the presence of MPs altered abundance and functions of microorganisms in wastewater, despite different effects on different types of microorganisms. The most abundant ARGs in original disinfection tank sewage was rpoB2 (6.34%). A certain concentration range of MPs can improve the ability of specific types of ARGs in the UV disinfection process. Compared to the system without PSMPs, the content of Deinococcus-Thermus and Bacteroidetes phylum increased, while Actinobacteria and Proteobacteria phylum decreased in the presence of MPs. The microbial functions, especially the genetic information processing and metabolism were altered by the presence of PSMPs. In addition, PSMPs altered the content of ARGs, where the contents of OXA-182 and ErmH were increased, while adeF and ANT3-Iic were decreased. PSMPs also decreased the free ARB content in wastewater by providing colonization sites. The UV disinfection efficiency of microorganisms and ARGs was also intervened by PSMPs since they provided colonization sites and increased the water turbidity. The findings indicated that PSMPs altered the distribution and removal of microbial community and ARGs in ultraviolet disinfection of wastewater, highlighting the combined risks.


Assuntos
Microbiota , Microplásticos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Desinfecção , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Plásticos , Poliestirenos , Esgotos , Águas Residuárias , Água
8.
Exp Ther Med ; 17(1): 835-846, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30651870

RESUMO

Oxidative stress has been reported to serve an important role in the development and progression of diabetic nephropathy (DN). Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells promotes renal fibrosis in DN, while the mechanism of reactive oxygen species (ROS)-mediated EMT is not fully understood. The aim of the present study was to investigate the effect of high glucose-induced ROS on the activation of the transforming growth factor (TGF)-ß1/phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in a normal rat kidney tubular epithelial cell line (NRK-52E) and rats with type 1 diabetes. In vitro, high glucose-stimulated ROS production resulted in increased TGF-ß1 expression as well as an increase in the Akt and mTOR phosphorylation ratio, resulting in EMT. When cells were pre-treated with ROS inhibitors, changes in TGF-ß1, Akt and mTOR were significantly ameliorated. In vivo, diabetic rats experienced a significant decline in renal function and severe renal fibrosis compared with control rats at 8 weeks following streptozocin injection. Levels of malondialdehyde and TGF-ß1/PI3K/Akt/mTOR pathway activation were increased in the renal cortex of rats with diabetes compared with the control rats. Furthermore, renal fibrosis was further aggravated in DN compared with the control rats. The results of the present study suggest that ROS serves an important role in mediating high glucose-induced EMT and inhibits activation of the TGF-ß1/PI3K/Akt/mTOR pathway. ROS may therefore have potential as a treatment approach to prevent renal fibrosis in DN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA