Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501818

RESUMO

Water molecules play a very important role in the hydration and dehydration process of hydrates, which may lead to distinct physical and chemical properties, affecting their availability in practical applications. However, miniaturized, integrated sensors capable of the rapid, sensitive sensing of water molecules in the hydrate are still lacking, limiting their proliferation. Here, we realize the high-sensitivity sensing of water molecules in copper sulfate pentahydrate (CuSO4·5H2O), based on an on-chip terahertz whispering gallery mode resonator (THz-WGMR) fabricated on silicon material via CMOS-compatible technologies. An integrated THz-WGMR with a high-Q factor of 3305 and a resonance frequency of 410.497 GHz was proposed and fabricated. Then, the sensor was employed to distinguish the CuSO4·xH2O (x = 5, 3, 1). The static characterization from the CuSO4·5H2O to the copper sulfate trihydrate (CuSO4·3H2O) experienced blueshifts of 0.55 GHz/µmol, whereas the dehydration process of CuSO4·3H2O to copper sulfate monohydrate (CuSO4·H2O) exhibited blueshifts of 0.21 GHz/µmol. Finally, the dynamic dehydration processes of CuSO4·5H2O to CuSO4·3H2O at different temperatures were monitored. We believe that our proposed THz-WGMR sensors with highly sensitive substance identification capabilities can provide a versatile and integrated platform for studying the transformation between substances, contributing to hydrated/crystal water-assisted biochemical applications.


Assuntos
Sulfato de Cobre , Silício , Água
2.
Biotechnol Lett ; 37(8): 1615-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25975370

RESUMO

OBJECTIVES: The action modes of an endocellulase, EGA, and its domains (CD9 and CBM3) during enzymatic treatment of cotton fabrics were investigated. RESULTS: EGA, CD9 and CBM3 had the binding capacity to cellulose substrates, of which the filter paper was the substrate with the strongest binding capacity. Analyses of scanning electronic microscopy indicated that EGA and its catalytic domain CD9 etched the surface of cotton fabrics and broke the fibers of long chains. On the other hand, the binding domain CBM3 only resulted in swelling of cotton fibers. Both EGA and its catalytic domain CD9 had minimal effect on the weight loss of cotton fabrics, whereas the effect of EGA and CD9 on the degree of polymerization and breaking strength was significant. After 12 h enzymatic action, the values of weight loss ratio for EGA and CD9 were 2.07 and 2.21 %, respectively, meanwhile the reductions in fabric strength were 27.04 % for EGA and 17.23 % for CD9. CONCLUSIONS: In contrast to the action of EGA and CD9, CBM3 showed no significant changes in terms of the weight loss ratio, degree of polymerization, and fabric strength.


Assuntos
Celulases/metabolismo , Gossypium/metabolismo , Têxteis , Celulases/genética , Gossypium/ultraestrutura , Hidrólise , Microscopia Eletrônica de Varredura , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo
3.
Sensors (Basel) ; 8(7): 4441-4465, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27879946

RESUMO

This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA