Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411326, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252480

RESUMO

Although biocatalysis has garnered widespread attention in both industrial and academic realms, the enzymatic synthesis of chiral oxetanes remains an underdeveloped field. Halohydrin dehalogenases (HHDHs) are industrially relevant enzymes that have been engineered to accomplish the reversible transformation of epoxides. In our work, a biocatalytic platform was constructed for the stereoselective kinetic resolution of chiral oxetanes and formation of 1,3-disubstituted alcohols. HheC from Agrobacterium radiobacter AD1 was engineered to identify key variants capable of catalyzing the dehalogenation of γ-haloalcohols (via HheC M1-M3) and ring opening of oxetanes (via HheC M4-M5) to access both (R)- and (S)-configured products with high stereoselectivity and remarkable catalytic activity, yielding up to 49% with enantioselectivities exceeding 99% ee and E>200. The current strategy is broadly applicable as demonstrated by expansion of substrate scope to include up to 18 examples for dehalogenations and 16 examples for ring opening. Additionally, the functionalized products are versatile building blocks for pharmaceutical applications. To shed light on the molecular recognition mechanisms for the relevant variants, molecular dynamic (MD) simulations were performed. The current strategy expands the scope of HHDH-catalyzed chiral oxetane ring constructions, offering efficient access to both enantiomers of chiral oxetanes and 1,3-disubstituted alcohols.

2.
Angew Chem Int Ed Engl ; : e202416569, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271458

RESUMO

The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this work, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities for up to 24 examples (up to 99% ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily enlarged to allow isolation of the atropisomeric products in 99% ee and 82% isolated yields. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivities and enzymatic activities. The current strategy expands the scope of IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.

3.
J Agric Food Chem ; 72(32): 18214-18224, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101349

RESUMO

Mogrosides are natural compounds highly valued in the food sector for their exceptional sweetness. Here, we report a novel O-glycosyltransferase (UGT74DD1) from Siraitia grosvenorii that catalyzes the conversion of mogrol to mogroside IIE. Site-directed mutagenesis yielded the UGT74DD1-W351A mutant, which exhibited the new capability to transform mogroside IIE into the valuable sweetener mogroside III, but with low catalytic activity. Subsequently, using structure-guided directed evolution with combinatorial active-site saturation testing, the superior mutant M6 (W351A/Q373 K/E49H/Q335W/S278C/D17F) were obtained, which showed a 46.1-fold increase in catalytic activity compared to UGT74DD1-W351A. Molecular dynamics simulations suggested that the enhanced activity and extended substrate profiles of M6 are due to its enlarged substrate-binding pocket and strengthened enzyme-substrate hydrogen bonding interactions. Overall, we redesigned UGT74DD1, yielding mutants that catalyze the conversion of mogrol into mogroside III. This study thus broadens the toolbox of UGTs capable of catalyzing the formation of valuable polyglycoside compounds.


Assuntos
Glicosiltransferases , Edulcorantes , Glicosiltransferases/genética , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Cucurbitaceae/química , Cucurbitaceae/enzimologia , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Biocatálise , Domínio Catalítico , Engenharia de Proteínas , Especificidade por Substrato , Cinética
4.
Chem Commun (Camb) ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210728

RESUMO

Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.

5.
Bioresour Bioprocess ; 11(1): 70, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023666

RESUMO

Reductive amination by amine dehydrogenases is a green and sustainable process that produces only water as the by-product. In this study, a continuous flow process was designed utilizing a packed bed reactor filled with co-immobilized amine dehydrogenase wh84 and glucose dehydrogenase for the highly efficient biocatalytic synthesis of chiral amino alcohols. The immobilized amine dehydrogenase wh84 exhibited better thermo-, pH and solvent stability with high activity recovery. (S)-2-aminobutan-1-ol was produced in up to 99% conversion and 99% ee in the continuous flow processes, and the space-time yields were up to 124.5 g L-1 d-1. The continuous reactions were also extended to 48 h affording up to 91.8% average conversions. This study showcased the important potential to sustainable production of chiral amino alcohols in continuous flow processes.

6.
Chembiochem ; 25(13): e202400328, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38742991

RESUMO

Baeyer-Villiger monooxygenases belong to a family of flavin-binding proteins that catalyze the Baeyer-Villiger (BV) oxidation of ketones to produce lactones or esters, which are important intermediates in pharmaceuticals or sustainable materials. Phenylacetone monooxygenase (PAMO) from Thermobifida fusca with moderate thermostability catalyzes the oxidation of aryl ketone substrates, but is limited by high specificity and narrow substrate scope. In the present study, we applied loop optimization by loop swapping followed by focused saturation mutagenesis in order to evolve PAMO mutants capable of catalyzing the regioselective BV oxidation of cyclohexanone and cyclobutanone derivatives with formation of either normal or abnormal esters or lactones. We further modulated PAMO to increase enantioselectivity. Crystal structure studies indicate that rotation occurs in the NADP-binding domain and that the high B-factor region is predominantly distributed in the catalytic pocket residues. Computational analyses further revealed dynamic character in the catalytic pocket and reshaped hydrogen bond interaction networks, which is more favorable for substrate binding. Our study provides useful insights for studying enzyme-substrate adaptations.


Assuntos
Oxigenases de Função Mista , Engenharia de Proteínas , Thermobifida , Estereoisomerismo , Especificidade por Substrato , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Thermobifida/enzimologia , Thermobifida/metabolismo , Oxirredução , Biocatálise , Domínio Catalítico , Modelos Moleculares
7.
Updates Surg ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575804

RESUMO

Video-assisted thoracic surgery (VATS) has been widely used in lung cancer treatment. However, VATS left upper lobectomy (LUL) is complex due to the intricate branching pattern of the left pulmonary artery (PA). Nevertheless, VATS right upper lobectomy can be simplified through a bronchus-first and simultaneous vessel stapling technique. In this study, the learning curve was obtained while ensuring favorable oncological outcomes using bronchus-first method for VATS LUL. First, retrospective data of 148 consecutive patients who underwent VATS LUL (bronchus-first method) for non-small cell lung cancer (NSCLC) from March 2018 to October 2020 were analyzed. The learning curve was then assessed via cumulative sum (CUSUM) analysis. Moreover, data at different stages of the learning curve, including operation time, blood loss, postoperative hospital stay, lymph node harvested, thoracotomy conversion, postoperative complications, endoscopic stapler consumptions, and 3 year overall survival, were recorded. The learning curve was best modeled as the equation: y = - 7.78 + 2.05x-2.23 × 10-2x2 + 6.43 × 10-5x3, with a good-to-fit test R2 = 0.97. The surgeon entered the proficient stage (59th case-148th case) after consecutive operations of 58 cases (learning stage, 1st case-58th case). Notably, more lymph nodes were harvested in the proficient stage than in the learning stage (17.69 ± 1.47 vs. 15.53 ± 1.43, P < 0.01). Compared with the learning stage, the proficient stage was associated with shorter operation time (114.28 ± 8.56 min vs. 126.81 ± 7.30 min, P < 0.01), fewer blood loss (44.22 ± 7.75 mL vs. 57.41 ± 22.98 mL, P < 0.01), shorter postoperative hospital stay (6.02 ± 0.99 d vs. 7.22 ± 1.34 d, P < 0.01), and fewer endoscopic stapler consumptions (5.89 ± 0.64 vs. 6.53 ± 0.50, P < 0.01). However, thoracotomy conversion (4/90 vs. 5/58, P = 0.32), postoperative complications (10/90 vs. 11/58, P = 0.23) and 3 year overall survival (62.2% vs. 50.8%, log-rank test, P = 0.11) showed no significant difference between the two stages. The surgeon with former single-direction VATS lobectomy experience can master bronchus-first VATS LUL after attending to 58 cases.

8.
Public Health ; 231: 55-63, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626672

RESUMO

OBJECTIVES: This study aimed to assess the level of public trust in general practitioners (GPs) and its association with primary care contract services (PCCS) in China. STUDY DESIGN: Cross-sectional study. METHODS: Between September and December 2021, 4158 residents across eastern, central, and western China completed a structured self-administered questionnaire. Trust was assessed using the Chinese version of Wake Forest Physician Trust Scale. Multivariable linear regression models were established to identify predictors of trust. The effect size of PCCS on trust was estimated by the average treatment effect for the treated (ATT) through propensity score matching. RESULTS: The study participants had a mean Wake Forest Physician Trust Scale score of 36.82 (standard deviation = 5.45). Enrollment with PCCS (ß = 0.14, P < 0.01), Han ethnicity (ß = 0.03, P < 0.05), lower educational attainment (ß = -0.06, P < 0.01), higher individual monthly income (ß = 0.03, P < 0.05), better self-rated health (ß = 0.04, P < 0.05), chronic conditions (ß = 0.07, P < 0.01), and higher familiarity with primary care services (ß = 0.12, P < 0.01) and PCCS (ß = 0.21, P < 0.01) were associated with higher trust in GPs. The ATT of PCCS exceeded 1 (P < 0.05). CONCLUSIONS: PCCS are associated with higher levels of trust in GPs. PCCS may become an effective tool to attract public trust in GPs, although the relationship between the two may be bi-directional.


Assuntos
Clínicos Gerais , Atenção Primária à Saúde , Confiança , Humanos , Estudos Transversais , China , Masculino , Feminino , Atenção Primária à Saúde/estatística & dados numéricos , Pessoa de Meia-Idade , Adulto , Clínicos Gerais/psicologia , Clínicos Gerais/estatística & dados numéricos , Inquéritos e Questionários , Relações Médico-Paciente , Serviços Contratados , Idoso , Adulto Jovem , Adolescente
9.
JACS Au ; 4(2): 411-418, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425895

RESUMO

Axially chiral aldehydes have emerged recently as a unique class of motifs for drug design. However, few biocatalytic strategies have been reported to construct structurally diverse atropisomeric aldehydes. Herein, we describe the characterization of alcohol dehydrogenases to catalyze atroposelective desymmetrization of the biaryl dialdehydes. Investigations into the interactions between the substrate and key residues of the enzymes revealed the distinct origin of atroposelectivity. A panel of 13 atropisomeric monoaldehydes was synthesized with moderate to high enantioselectivity (up to >99% ee) and yields (up to 99%). Further derivatization allows enhancement of the diversity and application potential of the atropisomeric compounds. This study effectively expands the scope of enzymatic synthesis of atropisomeric aldehydes and provides insights into the binding modes and recognition mechanisms of such molecules.

10.
J Biotechnol ; 386: 19-27, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38521166

RESUMO

Vanillin is a valuable natural product that can be used as a fragrance and additive. Recent research in the biosynthesis of vanillin has brought attention to a key enzyme, carboxylic acid reductase (CAR), which catalyzes the reduction of vanillic acid to vanillin. Nevertheless, the biosynthesis of vanillin is hampered by the low activity and stability of CAR. As such, a rational design campaign was conducted on a well-documented carboxylic acid reductase from Segniliparus rugosus (SrCAR), using vanillic acid as the model substrate. After combined active site saturation and iterative site-specific mutagenesis, the best quadruple mutant N292H/K524S/A627L/E1121W (M3) was successfully obtained. In comparison to the wildtype SrCAR, M3 demonstrated a 4.2-fold increase in catalytic efficiency (kcat/Km), and its half-life (t1/2) was enhanced by 3.8 times up to 385.08 minutes at 40 °C. In silico docking and molecular dynamics simulation provided insights into the improved activity and stability. In the subsequent preparative-scale reaction with 100 mM (16.8 g L-1) vanillic acid, the whole cell catalysis utilizing M3 produced 10.15 g·L-1 of vanillin and 1.11 g·L-1 of vanillyl alcohol, respectively. This work demonstrates a dual improvement in the activity and thermal stability of SrCAR, thereby potentially facilitating the application of carboxylic acid reductase in the biosynthesis of vanillin.


Assuntos
Oxirredutases , Ácido Vanílico , Oxirredutases/química , Benzaldeídos
11.
Chembiochem ; 25(9): e202400069, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504591

RESUMO

Arylalkylamine N-acetyltransferase (AANAT) serves as a key enzyme in the biosynthesis of melatonin by transforming 5-hydroxytryptamine (5-HT) to N-acetyl-5-hydroxytryptamine (NAS), while its low activity may hinder melatonin yield. In this study, a novel AANAT derived from Sus scrofa (SsAANAT) was identified through data mining using 5-HT as a model substrate, and a rational design of SsAANAT was conducted in the quest to improving its activity. After four rounds of mutagenesis procedures, a triple combinatorial dominant mutant M3 was successfully obtained. Compared to the parent enzyme, the conversion of the whole-cell reaction bearing the best variant M3 exhibted an increase from 50 % to 99 % in the transformation of 5-HT into NAS. Additionally, its catalytic efficiency (kcat/Km) was enhanced by 2-fold while retaining the thermostability (Tm>45 °C). In the up-scaled reaction with a substrate loading of 50 mM, the whole-cell system incorporating variant M3 achieved a 99 % conversion of 5-HT in 30 h with an 80 % yield. Molecular dynamics simulations were ultilized to shed light on the origin of improved activity. This study broadens the repertoire of AANAT for the efficient biosynthesis of melatonin.


Assuntos
Arilalquilamina N-Acetiltransferase , Serotonina , Arilalquilamina N-Acetiltransferase/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/química , Serotonina/metabolismo , Serotonina/química , Serotonina/biossíntese , Animais , Acetilação , Engenharia de Proteínas , Suínos
12.
Chem Soc Rev ; 53(1): 227-262, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059509

RESUMO

Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.


Assuntos
NAD , Oxirredutases , Aminação , Oxirredutases/metabolismo , Aminas , Biocatálise , Iminas , Estereoisomerismo
13.
Environ Sci Pollut Res Int ; 31(5): 7514-7532, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159188

RESUMO

Vegetation is an essential component of terrestrial ecosystems, influenced by climate change and human activities. Quantifying the relative contributions of climate change and human activities to vegetation dynamics is crucial for addressing global climate change. Sichuan Province is one of the essential ecological functional areas in the upper reaches of the Yangtze River, and its vegetation change is of great significance to the environmental function and ecological security of the Yangtze River Basin and southwest China. In this paper, the modified Carnegie-Ames-Stanford Approach(CASA) model was used to estimate the monthly NPP (Net Primary Productivity) of vegetation in Sichuan Province from 2000 to 2018, and the univariate linear regression analysis was used to analyze the temporal and spatial variation of vegetation NPP in Sichuan Province from 2000 to 2018. In addition, taking vegetation NPP as an index, Pearson correlation analysis, partial correlation analysis, and second-order partial correlation analysis were carried out to quantitatively analyze the contribution of climate change and human activities to vegetation NPP. Finally, the Hurst index and nonparametric Man-Kendall significance test were used to predict the future change trend of vegetation NPP in Sichuan Province. The results show that (1) from 2000 to 2018, the NPP of vegetation in Sichuan Province has a significant increasing trend (Slope = 6.09gC·m-2·a-1), with a multi-year average of 438.72 gC·m-2·a-1, showing a trend of low in the east and high in the middle. The response of vegetation NPP to altitude is different at different elevations; (2) the contribution rates of climate change and human activities to vegetation NPP change are 4.12gC·m-2·a-1 and 1.97gC·m-2·a-1, respectively. In contrast, the impact of human activities on NPP is more significant than climate change. Human activities are the main factors affecting vegetation restoration and degradation in Sichuan Province. However, the positive contribution to NPP change is less than climate change; (3) the future vegetation NPP change trend in Sichuan Province is mainly rising, and the same direction change trend is much larger than the reverse change trend. The areas with an increasing trend in the future account for 89.187% of the total area. This research helps understand the impact of climate change and human activities on vegetation change in Sichuan Province. It offers scientific bases for vegetation restoration and ecosystem management in Sichuan and the surrounding areas.


Assuntos
Mudança Climática , Ecossistema , Humanos , Modelos Teóricos , Atividades Humanas , China
14.
J Agric Food Chem ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919930

RESUMO

Low-molecular-weight glutenin subunits (LMW-GSs) associated with bread-baking quality and flour nutrient quality accumulate in endosperms of common wheat and related species. However, the mechanism underlying the expression regulation of genes encoding LMW-GSs has not been fully elucidated. In this study, we identified LMW-D2 and LMW-D7, which are highly and weakly expressed, respectively, via the analysis of RNA-sequencing data of Chinese Spring wheat and wheat transgenic lines transformed with 5' deletion promoter fragments and GUS fusion constructs. The 605-bp fragment upstream of the LMW-D2 start codon could drive high levels of GUS expression in the endosperm. The truncated endosperm box located at the -300 site resulted in the loss of LMW-D2 promoter activity, and a single-nucleotide polymorphism on the GCN4 motif was closely related to the expression of LMW-GSs. TCT and TGACG motifs, as well as the others located on the 5' distal end, might also be involved in the transcription regulation of LMW-GSs. In transgenic lines, fusion proteins of LMW-GS and GUS were deposited into protein bodies. Our findings provide new insights into the mechanism underlying the transcription regulation of LMW-GSs and will contribute to the development of wheat endosperm as a bioreactor for the production of nutraceuticals, antibodies, vaccines, and medicinal proteins.

15.
Postgrad Med ; 135(8): 831-841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032178

RESUMO

OBJECTIVE: In this study, we evaluated the clinical utility of tracheal aspirates α-amylase (AM), pepsin, and lipid-laden macrophage index (LLMI) in the early diagnosis of ventilator-associated pneumonia (VAP) in elderly patients on mechanical ventilation. METHODS: Within 96 hours of tracheal intubation, tracheal aspirate specimens were collected from elderly patients on mechanical ventilation; AM, pepsin, and LLMI were detected, and we analyzed the potential of each index individually and in combination in diagnosing VAP. RESULTS: Patients with VAP had significantly higher levels of AM, pepsin, and LLMI compared to those without VAP (P < 0.001), and there was a positive correlation between the number of pre-intubation risk factors of aspiration and the detection value of each index in patients with VAP (P < 0.001). The area under a receiver operating characteristic (ROC) curve (AUC) of AM, pepsin, and LLMI in diagnosis of VAP were 0.821 (95% CI:0.713-0.904), 0.802 (95% CI:0.693-0.892), and 0.621 (95% CI:0.583-0.824), the sensitivities were 0.8815, 0.7632, and 0.6973, the specificities were 0.8495, 0.8602, and 0.6291, and the cutoff values were 4,321.5 U/L, 126.61 ng/ml, and 173.5, respectively. The AUC for the combination of indexes in diagnosing VAP was 0.905 (95% CI:0.812-0.934), and the sensitivity and specificity were 0.9211 and 0.9332, respectively. In the tracheal aspirate specimens, the detection rate of AM ≥ cutoff was the highest, while it was the lowest for LLMI (P < 0.001). The detection rates of AM ≥ cutoff and pepsin ≥ cutoff were higher within 48 hours after intubation than within 48-96 hours after intubation (P < 0.001). In contrast, the detection rate of LLMI ≥ cutoff was higher within 48-96 hours after intubation than within 48 hours after intubation (P < 0.001). The risk factors for VAP identified using logistic multivariate analysis included pre-intubation aspiration risk factors (≥3), MDR bacteria growth in tracheal aspirates, and tracheal aspirate AM ≥ 4,321.5 U/L, pepsin ≥ 126.61 ng/ml, and LLMI ≥ 173.5. CONCLUSION: The detection of AM, pepsin, and LLMI in tracheal aspirates has promising clinical utility as an early warning biomarker of VAP in elderly patients undergoing mechanical ventilation.


Assuntos
Pneumonia Associada à Ventilação Mecânica , Respiração Artificial , Humanos , Idoso , Respiração Artificial/efeitos adversos , Pneumonia Associada à Ventilação Mecânica/etiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pepsina A/análise , Intubação Intratraqueal/efeitos adversos , Biomarcadores/análise , Unidades de Terapia Intensiva
16.
BMC Vet Res ; 19(1): 150, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684610

RESUMO

BACKGROUND: Toward the late phase of laying, the production performance of laying hens decreases, egg quality deteriorates, lipid metabolism weakens, and hepatic lipid accumulation is exacerbated. Probiotics as an alternative to antimicrobials have been employed in poultry-related industries. Lactobacillus rhamnosus GG (LGG) is currently the most researched and clinically validated probiotic, showing promising effects in multiple application areas. However, few studies have been conducted on livestock (including poultry) production. RESULTS: Compared with the CON group, the feed conversion ratio (P < 0.01) declined significantly in the LGG group. Eggshell strength (P < 0.001) and eggshell thickness (P < 0.001) were significantly increased by supplementation with LGG in the diet. The height (P < 0.001) and proportion (P < 0.05) of the effective layer and the mammillary knob density (P < 0.01) in the eggshell ultrastructure of the LGG group increased significantly, while the mammillary layer (P < 0.05) and knob width (P < 0.01) decreased significantly. The LGG-treated hens had significantly lower serum concentrations of low-density lipoprotein (P < 0.05), free fatty acids (P < 0.01), and liver triglyceride (P < 0.05) levels than those in the CON group. CONCLUSIONS: LGG supplementation significantly decreases the feed conversion ratio, improves eggshell quality by altering the ultrastructure, and improves lipid metabolism in the late laying period.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Animais , Feminino , Metabolismo dos Lipídeos , Galinhas , Casca de Ovo , Óvulo , Probióticos/farmacologia
17.
Heliyon ; 9(7): e17903, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539201

RESUMO

The Yellow River Basin in China has the world's most serious soil erosion problem. The Yellow River Basin in Sichuan Province (YRS), as the upper reaches of the Yellow River, and its water conservation (WC) capacity greatly affects the ecological environment of the downstream basin. In recent years, YRS has received more and more attention, and numerous policies have been developed to improve local WC. However, there is a vacancy in the long-term research of WC in the YRS due to the lack of in-situ data. This study quantitatively evaluated the WC of YRS from 2001 to 2020 through Google Earth Engine (GEE) and analyzed the spatio-temporal variations of WC and land cover (LC). CA-Markov predicted the LC and WC in 2025 under three scenarios to assess the contribution of different scenarios to WC. The WC in YRS fluctuated from 1.93 to 6.77 billion m3. The climate is the dominant factor of WC change, but the effect of LC on WC is also evident. The WC capacity increases with vegetation coverage and height. The WC capacity of forests per km2 exceeds 600 mm, while that of grasslands is about 250 mm, and barren can cause around 300 mm of WC loss. In 2025, the WC in YRS may exceed 7.5 billion m3, but the past ecological management mode should be transformed. Improving the quality of land use and converting grasslands to forests is better than reducing cropland to improve WC.

18.
J Affect Disord ; 339: 725-731, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442445

RESUMO

OBJECTIVE: We aimed to understand the current situation and contributory factors associated with professional identity, turnover intention and job burnout among general practitioners (GPs) in eastern, central and western China. METHODS: A total of 3244 GPs from community health service institutions in 12 provinces of China were recruited, from October 2017 to February 2018. Demographic information such as sex, region and mode of employment was sought, and issues regarding job burnout, professional identity and turnover intention of GPs were measured with the corresponding scale, and softwares such as SPSS and AMOS were used. T-test, analysis of variance, and covariance matrix were used for analysis. RESULTS: The average total scores of job burnout, turnover intention and professional identity of GPs in China were 44.12, 15.07 and 51.23, respectively. The results of intermediary effect analysis showed that in the GPs group, there were differences in the distribution of the three indicators. Professional identity had a significant negative effect on job burnout (ß = -0.373), while job burnout had a significant positive effect on turnover intention (ß = 0.528), and job burnout had an indirect effect in the relationship between professional identity and turnover intention. Job burnout played an intermediary role in professional identity and turnover intention. CONCLUSIONS: The turnover intention of GPs in China has improved, but it is still at a high level. Job burnout plays an intermediary role between professional identity and turnover intention.

19.
Nat Commun ; 14(1): 2117, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055470

RESUMO

Biocatalysis is increasingly replacing traditional methods of manufacturing fine chemicals due to its green, mild, and highly selective nature, but biocatalysts, such as enzymes, are generally costly, fragile, and difficult to recycle. Immobilization provides protection for the enzyme and enables its convenient reuse, which makes immobilized enzymes promising heterogeneous biocatalysts; however, their industrial applications are limited by the low specific activity and poor stability. Herein, we report a feasible strategy utilizing the synergistic bridging of triazoles and metal ions to induce the formation of porous enzyme-assembled hydrogels with increased activity. The catalytic efficiency of the prepared enzyme-assembled hydrogels toward acetophenone reduction is 6.3 times higher than that of the free enzyme, and the reusability is confirmed by the high residual catalytic activity after 12 cycles of use. A near-atomic resolution (2.1 Å) structure of the hydrogel enzyme is successfully analyzed via cryogenic electron microscopy, which indicates a structure-property relationship for the enhanced performance. In addition, the possible mechanism of gel formation is elucidated, revealing the indispensability of triazoles and metal ions, which guides the use of two other enzymes to prepare enzyme-assembled hydrogels capable of good reusability. The described strategy can pave the way for the development of practical catalytic biomaterials and immobilized biocatalysts.


Assuntos
Álcool Desidrogenase , Hidrogéis , Hidrogéis/química , Triazóis , Enzimas Imobilizadas/química , Íons , Materiais Biocompatíveis , Biocatálise , Estabilidade Enzimática
20.
Plant Sci ; 330: 111622, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36731749

RESUMO

The wheat pericarp is the main component of the caryopsis at the early development stage and ultimately converts into a tissue that covers the mature caryopsis. A large number of starch granules are accumulated in the pericarp, but the production of and the role of starch granules in caryopsis development remain- elusive. In the present study, the relationship between accumulated starch granules and starch metabolism-related genes in wheat pericarp was investigated using paraffin section observations, expression analysis, and mutant analysis. Starch synthesis is initiated before anthesis and is dependent on a sucrose uptake and conversion system similar to that in the endosperm. TaPTST2 is required to initiate the production of pericarp starch granules. Pericarp starch granules gradually disappeared at the filling stage with high expression levels of genes encoding ß-amylase, sucrose-phosphate synthase, and sucrose-phosphate phosphatase. As a maternal tissue adjacent to the endosperm and embryo, the pericarp plays a temporary reservoir for excess nutrients delivered into the caryopsis during the early development stage and exported at the filling stage. The pericarp contributes to the development of the endosperm and embryo as well as the accumulation of endosperm starch. The metabolism of pericarp starch may affect the weight of the wheat caryopsis.


Assuntos
Endosperma , Amido , Endosperma/metabolismo , Amido/metabolismo , Triticum/metabolismo , Metabolismo dos Carboidratos , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA