Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Transl Med ; 9(20): 1517, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790723

RESUMO

BACKGROUND: It has been demonstrated that berberine (BBR), a kind of alkaloid derived from Chinese herbal medicine, has multiple pharmacological effects on human's diseases including anti-atherosclerosis action. However, although the previous studies showed that the beneficial impact of BBR on atherosclerosis might be associated with proprotein convertase subtilisin/kexin type 9 (PCSK9), the exact underlying mechanism are not fully determined. The present study aimed to investigate potential mechanisms of anti-atherosclerosis by BBR using ApoE-/- mice. METHODS: The eight-week mice were divided into five groups: group 1 (wild type C57BL/6J mice with normal diet), group 2 (ApoE-/- mice with normal diet), group 3 [ApoE-/- mice with high-fat diet (HFD)], group 4 (ApoE-/- mice with HFD, and treatment with low dose BBR of 50 mg/kg/d), and group 5 (ApoE-/- mice with HFD, and treatment with high dose BBR of 100 mg/kg/d). After a 16-week treatment, the blood sample, aorta and liver were collected for lipid analysis, hematoxylin-eosin (HE) or oil red O staining, and Western blotting respectively. Besides, HepG2 Cells were cultured and treated with different concentrations of BBR (0, 5, 25 and 50 µg/mL) for 24 hours. Subsequently, cells were collected for real-time PCR or western blotting assays. Finally, the expression levels of PCSK9, LDL receptor (LDLR), ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SR-BI) were examined. RESULTS: Fifty mg/kg/d and 100 mg/kg/d of BBR decreased total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDL-C) level. Moreover, BBR reduced aorta atherosclerotic plaque, and ameliorated lipid deposition in ApoE-/- mice fed with HFD. Finally, in vitro study showed that BBR promoted intracellular cholesterol efflux, up-regulated LDLR and down-regulated PCSK9 expression via the ERK1/2 pathway in cultured HepG2 cells. CONCLUSIONS: Data indicated that BBR significantly attenuated lipid disorder, reduced aortic plaque formation, and alleviated hepatic lipid accumulation in ApoE-/- mice fed with HFD, which was associated with down-regulation of PCSK9 through ERK1/2 pathway.

2.
Nutr Metab Cardiovasc Dis ; 31(1): 322-332, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33500108

RESUMO

BACKGROUND AND AIM: Diallyl disulfide (DADS), a volatile sulfide extracted from garlic, has been suggested as a chemical of anti-atherosclerotic drugs, while its molecular mechanism for this benefit has not fully been understood. The aim of the present study was to investigate the effects of DADS on lipid metabolism and its potential mechanisms in HepG2 cells induced by lipopolysaccharides (LPS). METHODS AND RESULTS: HepG2 cells were treated with LPS with or without different concentrations of DADS (0, 20, 40, 80, 160 µg/ml) for 24 h. The cell activity was detected by CCK8, and Dil-LDL uptake assay was used to examine the LDL uptake. Real-time PCR and Western blot were used to detect the expression of LDLR, PCSK9 SREBP2 and HMGCR. In addition, we examined the effect of the combination of DADS with atorvastatin on PCSK9 expression. The results showed that LPS significantly increased PCSK9 and SREBP2 expressions in a dose-dependent manner in HepG2 cells. DADS attenuated PCSK9, SREBP2 and HMGCR expressions and up-regulated the expression of LDLR. Moreover, DADS reversed the expressions of PCSK9, SREBP2, HMGCR and LDLR induced by LPS and DADS could promote the LDL uptake in HepG2 cells. Furthermore, DADS decreased the expression of PCSK9 by activating the PI3K/Akt-SREBP2 signal pathway. Notably, DADS could reduce PCSK9 expression induced by atorvastatin in HepG2 cells. CONCLUSION: DADS could significantly attenuated PCSK9 expression in a dose-dependent manner induced by LPS and increased the LDLR expression in HepG2 cells, which was associated with the activation of PI3K/Akt-SREBP2 signaling pathway.


Assuntos
Compostos Alílicos/farmacologia , Dissulfetos/farmacologia , Hepatócitos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Lipoproteínas LDL/metabolismo , Inibidores de PCSK9 , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Serina Proteinase/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
3.
Neural Regen Res ; 16(5): 899-904, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33229726

RESUMO

Pannexin 1 (Panx 1), as a large-pore membrane channel, is highly permeable to ATP and other signaling molecules. Previous studies have demonstrated the expression of Panx 1 in the nervous system, including astrocytes, microglia, and neurons. However, the distribution and function of Panx 1 in the peripheral nervous system are not clear. Blocking the function of Panx 1 pharmacologically (carbenoxolone and probenecid) or with small interfering RNA targeting pannexins can greatly reduce hypotonicity-induced ATP release. Treatment of Schwann cells with a Ras homolog family member (Rho) GTPase inhibitor and small interfering RNA targeting Rho or cytoskeleton disrupting agents, such as nocodazole or cytochalasin D, revealed that hypotonicity-induced ATP release depended on intracellular RhoA and the cytoskeleton. These findings suggest that Panx 1 participates in ATP release in Schwann cells by regulating RhoA and the cytoskeleton arrangement. This study was approved by the Animal Ethics Committee of Nantong University, China (No. S20180806-002) on August 5, 2018.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA