Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Poult Sci ; 103(9): 103894, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-39013293

RESUMO

In the late growth stage of commercial Pekin ducks, a significant increase in feed intake and a decline in body weight gain have been observed, leading to impaired feed conversion efficiency. To address this issue, we investigated alterations in production performance, blood biochemical indices, ileum tissue architecture, and microbial community structure in Pekin ducks. The primary objective was to provide robust data supporting the improvement of meat duck production efficiency during the late growth stage (28-42-days-old). Forty 28-day-old Pekin ducks were randomly assigned to 8 replicates, with five ducks per replicate. The rearing period lasted 14 days, with feed and water provided ad libitum. Our findings indicated a significant increase in Pekin duck body and heart weights with advancing age (P < 0.05). Moreover, serum antioxidant enzyme and high-density lipoprotein concentrations significantly increased, whereas triglyceride levels decreased (P < 0.05). Notably, the height of the ileal villi was significantly reduced (P < 0.05). The microbial community structure of the ileum exhibited significant changes as ducks aged, accompanied by a substantial increase in microbial flora diversity, particularly with the formation of more tightly connected microbial network modules. Time-dependent enrichment was observed in microbial gene functions related to energy metabolism pathways. At the genus level, Sphingomonas and Subdoligranulum have emerged as crucial players in microbial differential functional pathways and network formation. These bacteria likely serve as the key driving factors in the dynamic microbial changes that occur in Pekin ducks over time. Overall, our findings suggest a potential decline in the absorption function of the small intestine and fat deposition performance of Pekin ducks during later growth stages, which may be attributed to the maturation and proliferation of the gut microbial community.

2.
Animals (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929399

RESUMO

Spurs, which mainly appear in roosters, are protrusions near the tarsometatarsus on both sides of the calves of chickens, and are connected to the tarsometatarsus by a bony core. As a male-biased morphological characteristic, the diameter and length of spurs vary significantly between different individuals, mainly related to genetics and age. As a specific behavior of hens, egg-laying also varies greatly between individuals in terms of traits such as age at first egg (AFE), egg weight (EW), and so on. At present, there are few studies on chicken spurs. In this study, we investigated the inheritance pattern of the spur trait in roosters with different phenotypes and the correlations between spur length, body weight at 18 weeks of age (BW18), shank length at 18 weeks of age (SL18), and the egg-laying trait in hens (both hens and roosters were from the same population and were grouped according to their family). These traits related to egg production included AFE, body weight at first egg (BWA), and first egg weight (FEW). We estimated genetic parameters based on pedigree and phenotype data, and used variance analysis to calculate broad-sense heritability for correcting the parameter estimation results. The results showed that the heritability of male left and right spurs ranged from 0.6 to 0.7. There were significant positive correlations between left and right spur length, BW18, SL18, and BWA, as well as between left and right spur length and AFE. We selected 35 males with the longest spurs and 35 males with the shortest spurs in the population, and pooled them into two sets to obtain the pooled genome sequencing data. After genome-wide association and genome divergency analysis by FST, allele frequency differences (AFDs), and XPEHH methods, we identified 7 overlapping genes (CENPE, FAT1, FAM149A, MANBA, NFKB1, SORBS2, UBE2D3) and 14 peak genes (SAMD12, TSPAN5, ENSGALG00000050071, ENSGALG00000053133, ENSGALG00000050348, CNTN5, TRPC6, ENSGALG00000047655,TMSB4X, LIX1, CKB, NEBL, PRTFDC1, MLLT10) related to left and right spur length through genome-wide selection signature analysis and a genome-wide association approach. Our results identified candidate genes associated with chicken spurs, which helps to understand the genetic mechanism of this trait and carry out subsequent research around it.

3.
Poult Sci ; 103(6): 103666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703454

RESUMO

The bird beak is mainly functioned as feeding and attacking, and its shape has extremely important significance for survival and reproduction. In chickens, since beak shape could lead to some disadvantages including pecking and waste of feed, it is important to understand the inheritance of chicken beak shape. In the present study, we firstly established 4 indicators to describe the chicken beak shapes, including upper beak length (UL), lower beak length (LL), distance between upper and lower beak tips (DB) and upper beak curvature (BC). And then, we measured the 4 beak shape indicators as well as some production traits including body weight (BW), shank length (SL), egg weight (EW), eggshell strength (ES) of a layer breed, Rhode Island Red (RIR), in order to estimate genetic parameters of chicken beak shape. The heritabilities of UL and LL were 0.41 and 0.37, and the heritabilities of DB and BC were 0.22 and 0.21, indicating that beak shape was a highly or mediumly heritable. There were significant positive genetic and phenotypic correlations among UL, LL, and DB. And UL was positively correlated with body weight (BW18) and shank length (SL18) at 18 weeks of age in genetics, and DB was positively correlated with BC in terms of genetics and phenotype. We also found that layers of chicken cages played a role on beak shape, which could be attributed to the difference of lightness in different cage layers. By a genome-wide association study (GWAS) for the chicken UL, we identified 9 significant candidate genes associated with UL in RIR. For the variants with low minor allele frequencies (MAF <0.01) and outside of high linkage disequilibrium (LD) regions, we also conducted rare variant association studies (RVA) and GWAS to find the association between genotype and phenotype. We also analyzed transcriptomic data from multiple tissues of chicken embryos and revealed that all of the 9 genes were highly expressed in beak of chicken embryos, indicating their potential function for beak development. Our results provided the genetic foundation of chicken beak shape, which could help chicken breeding on beak related traits.


Assuntos
Bico , Galinhas , Animais , Galinhas/genética , Galinhas/anatomia & histologia , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Bico/anatomia & histologia , Feminino , Fenótipo , Masculino
4.
Poult Sci ; 103(6): 103694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663207

RESUMO

Plumage color is a characteristic trait of ducks that originates as a result of natural and artificial selection. As a conspicuous phenotypic feature, it is a breed characteristic. Previous studies have identified some genes associated with the formation of black and white plumage in ducks. However, studies on the genetic basis underlying the red plumage phenotype in ducks are limited. Here, genome-wide association analysis (GWAS) and selection signal detection (Fst, θπ ratio, and cross-population composite likelihood ratio [XP-CLR]) were conducted to identify candidate regions and genes underlying duck plumage color phenotype. Selection signal detection revealed 29 overlapping genes (including ENPP1 and ULK1) significantly associated with red plumage color in Ji'an Red ducks. ENSAPLG00000012679, ESRRG, and SPATA5 were identified as candidate genes associated with red plumage using GWAS. Selection signal detection revealed that 19 overlapping genes (including GMDS, PDIA6, and ODC1) significantly correlated with light brown plumage in Brown Tsaiya ducks. GWAS to narrow down the significant regions further revealed nine candidate genes (AKT1, ATP6V1C2, GMDS, LRP4, MAML3, PDIA6, PLD5, TMEM63B, and TSPAN8). Notably, in Brown Tsaiya ducks, GMDS, ODC1, and PDIA6 exhibit significantly differentiated allele frequencies among other feather-colored ducks, while in Ji'an Red ducks, ENSAPLG00000012679 has different allele frequency distributions compared with that in other feather-colored ducks. This study offers new insights into the variation and selection of the red plumage phenotype using GWAS and selective signals.


Assuntos
Patos , Plumas , Estudo de Associação Genômica Ampla , Pigmentação , Sequenciamento Completo do Genoma , Animais , Patos/genética , Patos/fisiologia , Estudo de Associação Genômica Ampla/veterinária , Pigmentação/genética , Sequenciamento Completo do Genoma/veterinária , Fenótipo , Genoma
5.
J Anim Sci Biotechnol ; 15(1): 45, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556896

RESUMO

BACKGROUND: Chicken is one of the most numerous and widely distributed species around the world, and many studies support the multiple ancestral origins of domestic chickens. The research regarding the yellow skin phenotype in domestic chickens (regulated by BCO2) likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens. However, beyond the BCO2 gene region, much remains unknown about the introgression from the grey junglefowl into domestic chickens. Therefore, in this study, based on whole-genome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds, we explored the introgression events from the grey junglefowl to domestic chickens. RESULTS: We successfully detected introgression regions besides BCO2, including two associated with growth trait (IGFBP2 and TKT), one associated with angiogenesis (TIMP3) and two members of the heat shock protein family (HSPB2 and CRYAB). Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens. Furthermore, we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds, indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained. Additionally, our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens, possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens. CONCLUSIONS: In summary, our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens, laying the foundation for a deeper understanding of the genetic composition within domestic chickens, and offering new perspectives on the impact of introgression on domestic chickens.

6.
Poult Sci ; 103(6): 103627, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593551

RESUMO

The age of first egg (AFE) in chicken can affect early and even life-time egg production performance to some extent, and therefore is an important economic trait that affects production efficiency. To better understand the genetic patterns of AFE and other production traits including body weight at first egg (BWA), first egg weight (FEW), and total egg number from AFE to 58 wk of age (total-EN), we recorded the production performance of 2 widely used layer breeds, white leghorn (WL) and Rhode Island Red (RIR) and estimated genetic parameters based on pedigree and production data. The results showed that the heritability of AFE in both breeds ranged from 0.4 to 0.6, and AFE showed strong positive genetic and phenotypic correlations to BWA as well as FEW, while showing strong negative genetic and phenotypic correlations with total-EN. Furtherly, by genome-wide association analysis study (GWAS), we identified 12 and 26 significant SNPs to be related to AFE in the 2-layer breeds, respectively. A total of 18 genes were identified that could affect AFE based on the significant SNP annotations obtained, but there were no gene overlapped in the 2 breeds indicating the genetic foundation of AFE could differ from breed to breed. Our results provided a deeper understanding of genetic patterns and molecular basement of AFE in different breeds and could help in the selection of egg production traits.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Galinhas/fisiologia , Feminino , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único , Óvulo/fisiologia , Fenótipo , Oviposição/genética
7.
Poult Sci ; 103(6): 103685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603937

RESUMO

As a Chinese local chicken breed, Hongshan chickens have 2 kinds of tail feather phenotypes, normal and taillessness. Our previous studies showed that taillessness was a sex-linked dominant trait. Abnormal development of the tail vertebrae could be explained this phenomenon in some chicken breeds. However, the number of caudal vertebrae in rumpless Hongshan chickens was normal, so rumplessness in Hongshan chicken was not related to the development of the caudal vertebrae. Afterwards, we found that rumplessness in Hongshan was due to abnormal development of tail feather rather than abnormal development of caudal vertebrae. In order to understand the genetic foundation of the rumplessness of Hongshan chickens, we compared and reanalyzed 2 sets of data in normal and rumpless Hongshan chickens from our previous studies. By joint analysis of genome-wide selection signature analysis and genome-wide association approach, we found that 1 overlapping gene (EDIL3) and 16 peak genes (ENSGALG00000051843, ENSGALG00000053498, ENSGALG00000054800, KIF27, PTPRD, ENSGALG00000047579, ENSGALG00000041052, ARHGEF28, CAMK4, SERINC5, ENSGALG00000050776, ERCC8, MCC, ADAMTS19, ENSGALG00000053322, CHRNA8) located on the Z chromosome was associated with the rumpless trait. The results of this study furtherly revealed the molecular mechanism of the rumpless trait in Hongshan chickens, and identified the candidate genes associated with this trait. Our results will help to improve the shape of chicken tail feathers and to rise individual economic value in some specific market in China.


Assuntos
Galinhas , Animais , Galinhas/genética , Masculino , Feminino , Plumas , Cauda/anatomia & histologia , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , China
8.
BMC Vet Res ; 20(1): 49, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326918

RESUMO

BACKGROUND: Avian pathogenic E. coli (APEC) can cause localized or systemic infections, collectively known as avian colibacillosis, resulting in huge economic losses to poultry industry globally per year. In addition, increasing evidence indicates that long non-coding RNAs (lncRNAs) play a critical role in regulating host inflammation in response to bacterial infection. However, the role of lncRNAs in the host response to APEC infection remains unclear. RESULTS: Here, we found 816 differentially expressed (DE) lncRNAs and 1,798 DE mRNAs in APEC infected chicken macrophages by RNAseq. The identified DE lncRNA-mRNAs were involved in Toll like receptor signaling pathway, VEGF signaling pathway, fatty acid metabolism, phosphatidylinositol signaling system, and other types of O-glycan biosynthesis. Furthermore, we found the novel lncRNA TCONS_00007391 as an important immune regulator in APEC infection was able to regulate the inflammatory response by directly targeting CD86. CONCLUSION: These findings provided a better understanding of host response to APEC infection and also offered the potential drug targets for therapy development against APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , RNA Longo não Codificante , Animais , Escherichia coli/genética , Galinhas/genética , Galinhas/microbiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Macrófagos , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/microbiologia
9.
Animals (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38066959

RESUMO

Driven by natural and artificial selection, the domestic Huoyan geese from Northern China have gradually generated specific phenotypes and climatic adaptations. To understand the genetic basis of the two specific phenotypes that are sex linked, including upper eyelid coloboma and gosling feather color, as well as the climatic adaptations of the Huoyan goose, which can contribute to the artificial selection and breeding of geese. We selected Huoyan geese and nine Southern Chinese goose breeds and identified their divergence on the genomic level. Using selective sweep analysis, we found that PTPRM on chromosome Z influences the upper eyelid coloboma phenotype of the Huoyan goose, and TYRP1 is a plausible candidate gene for the Huoyan gosling feather color. We obtained a number of genes related to cold adaptation in Huoyan geese, mainly involved in physiological functions such as metabolism, angiogenesis contraction and circulatory system, apoptosis, immunity, stress, and neural system. The most interesting candidates for cold adaptation are PIP5K1B and NMNAT3 that are associated with energy metabolism and stress. We also obtained some genes related to heat adaptation, including AGTPBP1, associated with neurology; GDA, associated with skin pigmentation; and NAA35, associated with apoptosis. These findings deepen our understanding of the genetics of specific phenotypes and climate adaptation in local geese and provide insights for the selection of goose breeds.

10.
Genome Biol Evol ; 15(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931036

RESUMO

The nonrecombining female-limited W chromosome is predicted to experience unique evolutionary processes. Difficulties in assembling W chromosome sequences have hindered the identification of duck W-linked sequences and their evolutionary footprint. To address this, we conducted three initial contig-level genome assemblies and developed a rigorous pipeline by which to successfully expand the W-linked data set, including 11 known genes and 24 newly identified genes. Our results indicate that the W chromosome expression may not be subject to female-specific selection; a significant convergent pattern of upregulation associated with increased female-specific selection was not detected. The genetic stability of the W chromosome is also reflected in the strong evolutionary correlation between it and the mitochondria; the complete consistency of the cladogram topology constructed from their gene sequences proves the shared maternal coevolution. By detecting the evolutionary trajectories of W-linked sequences, we have found that recombination suppression started in four distinct strata, of which three were conserved across Neognathae. Taken together, our results have revealed a unique evolutionary pattern and an independent stratum evolutionary pattern for sex chromosomes.


Assuntos
Patos , Evolução Molecular , Animais , Feminino , Patos/genética , Cromossomos Sexuais , Aves/genética , Padrões de Herança
11.
BMC Genomics ; 24(1): 704, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993775

RESUMO

BACKGROUND: Eggshell speckle phenotype is an important trait in poultry production because they affect eggshell quality. However, the genetic architecture of speckled eggshells remains unclear. In this study, we determined the heritability of eggshell speckles and conducted a genome-wide association study (GWAS) on purebred Rhode Island Red (RIR) hens at 28 weeks to detect potential genomic loci and candidate genes associated with eggshell speckles. RESULTS: The heritability of eggshell speckles was 0.35 at 28 weeks, and the speckle level is not related to other eggshell quality traits in terms of phenotypic correlation. We detected 311 SNPs (6 significantly, and 305 suggestively associated) and 39 candidate genes associated with eggshell speckles. Based on the pathway analysis, the 39 candidate genes were mainly involved in alpha-linolenic acid metabolism, linoleic acid metabolism, ether lipid metabolism, GnRH signaling pathway, vascular smooth muscle contraction, and MAPK signaling pathway. Ultimately, ten genes, LOC423226, SPTBN5, EHD4, LOC77155, TYRO3, ITPKA, DLL4, PLA2G4B, PLA2G4EL5, and PLA2G4EL6 were considered the most promising genes associated with eggshell speckles that were implicated in immunoregulation, calcium transport, and phospholipid metabolism, while its function in laying hens requires further studies. CONCLUSIONS: This study provides new insights into understanding the genetic basis of eggshell speckles and has practical application value for the genetic improvement of eggshell quality.


Assuntos
Casca de Ovo , Estudo de Associação Genômica Ampla , Animais , Feminino , Casca de Ovo/metabolismo , Galinhas/genética , Genoma , Fenótipo
12.
Poult Sci ; 102(12): 103068, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778296

RESUMO

Cockfighting is popular worldwide, dating back to 2,800 BC. Primarily, 5 modern Chinese gamecock breeds exist, located in the northeast (Luxi and Henan), west (Turpan), south (Xishuangbanna), and southeast (Zhangzhou) of China. However, whether Chinese gamecocks were derived from a single origin or multiple origins remains controversial. Therefore, this study used next-generation resequencing data to elucidate the origin of Chinese gamecocks by constructing genome-wide and SRY-box transcription factor 5 (SOX5) gene phylogenetic trees. Data from 161 chickens from 27 breeds, including 9 gamecock breeds, were included. Before constructing the SOX5 gene tree, we validated that the pea-comb phenotype mutation in all gamecock breeds was attributed to copy number variation in intron 1 of the SOX5 gene, as previously reported. The specific region was chr1: 65,838,000 to 65,846,000. The phylogenetic tree results suggested that Zhangzhou and Xishuangbanna gamecocks have a monophyletic origin, while Luxi, Henan, and Turpan gamecocks have a common ancestor. Our study provides genome-wide evidence that Chinese gamecocks have multiple origins and advances the understanding of the genetic mechanisms of the pea-comb characteristic.


Assuntos
Galinhas , Variações do Número de Cópias de DNA , Animais , Galinhas/genética , Filogenia , Mutação , China , Variação Genética
13.
Poult Sci ; 102(11): 103031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716235

RESUMO

Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.


Assuntos
Galinhas , Animais , Peso Corporal/genética , Galinhas/genética , Genômica , Metagenômica , Polimorfismo de Nucleotídeo Único , China , Seleção Artificial/genética
14.
Poult Sci ; 102(7): 102766, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37229885

RESUMO

Genomic admixture is a widespread phenomenon among domestic animal breeds, including chickens. However, reports on admixture within Chinese gamecocks or other indigenous chickens are limited. This study focuses on the population genetic structure and admixture of 5 Chinese gamecock breeds and the admixture with 9 other indigenous Chinese chicken breeds. Our results showed that Turpan and Henan gamecocks were grouped into one cluster, whereas Luxi, Zhangzhou, and Xishuangbanna gamecocks were grouped into the other cluster. Gene flow occurred between Xishuangbanna and Turpan and Turpan and Luxi gamecocks. Simultaneously, gene flow was observed between gamecocks and indigenous chickens, such as Xishuangbanna and Wenchang. Ancestral component analysis indicated that modern domestic chickens in southern China played an important role in the history of the domestication of modern Chinese gamecock. Our study will be helpful in better understanding the domestication and evolution of Chinese gamecock.


Assuntos
Galinhas , Variação Genética , Animais , Galinhas/genética , Genoma , Genômica , China , Polimorfismo de Nucleotídeo Único
15.
R Soc Open Sci ; 10(4): 221313, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035296

RESUMO

Genes with sex-biased expression are thought to underlie sexually dimorphic phenotypes and are therefore subject to different selection pressures in males and females. Many authors have proposed that sexual conflict leads to the evolution of sex-biased expression, which allows males and females to reach separate phenotypic and fitness optima. The selection pressures associated with domestication may cause changes in population architectures and mating systems, which in turn can alter their direction and strength. We compared sex-biased expression and genetic signatures in wild and domestic ducks (Anas platyrhynchos), and observed changes of sexual selection and identified the genomic divergence affected by selection forces. The extent of sex-biased expression in both sexes is positively correlated with the level of both d N /d S and nucleotide diversity. This observed changing pattern may mainly be owing to relaxed genetic constraints. We also demonstrate a clear link between domestication and sex-biased evolutionary rate in a comparative framework. Decreased polymorphism and evolutionary rate in domesticated populations generally matched life-history phenotypes known to experience artificial selection. Taken together, our work suggests the important implications of domestication in sex-biased evolution and the roles of artificial selection and sexual selection for shaping the diversity and evolutionary rate of the genome.

16.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107611

RESUMO

Plumage color is an artificially and naturally selected trait in domestic ducks. Black, white, and spotty are the main feather colors in domestic ducks. Previous studies have shown that black plumage color is caused by MC1R, and white plumage color is caused by MITF. We performed a genome-wide association study (GWAS) to identify candidate genes associated with white, black, and spotty plumage in ducks. Two non-synonymous SNPs in MC1R (c.52G>A and c.376G>A) were significantly related to duck black plumage, and three SNPs in MITF (chr13:15411658A>G, chr13:15412570T>C and chr13:15412592C>G) were associated with white plumage. Additionally, we also identified the epistatic interactions between causing loci. Some ducks with white plumage carry the c.52G>A and c.376G>A in MC1R, which also compensated for black and spotty plumage color phenotypes, suggesting that MC1R and MITF have an epistatic effect. The MITF locus was supposed to be an upstream gene to MC1R underlying the white, black, and spotty colors. Although the specific mechanism remains to be further clarified, these findings support the importance of epistasis in plumage color variation in ducks.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Animais , Patos/genética , Pigmentação/genética , Plumas , Polimorfismo de Nucleotídeo Único/genética
17.
Poult Sci ; 102(5): 102242, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931071

RESUMO

High dropping moisture (DM) in poultry production has deleterious effects on the environment, feeding cost, and public health of people and animals. To explore the contributing genetic components, we classified DM of 67-wk-old Rhode Island Red (RIR) hens at 4 different levels and evaluated the underlying genetic heritability. We found the heritability of DM to be 0.219, indicating a moderately heritable trait. We then selected chickens with the highest and lowest DM levels. Using transcriptome, we only detected 12 differentially expressed genes (DEGs) between these 2 groups from the spleen, and 1,507 DEGs from intestinal tissues (jejunum and cecum). The low number of DEGs observed in the spleen suggests that differing moisture levels are not attributed to pathogenic infection. Fourteen of the intestinal high expressed genes are associated with water-salt metabolism (WSM). We also investigated the gut microbial composition by 16S rRNA gene amplicon sequencing. Six different microbial operational taxonomic units (OTUs) (Cetobacterium, Sterolibacterium, Elusimicrobium, Roseburia, Faecalicoccus, and Megamonas) between the 2 groups from jejunum and cecum are potentially biomarkers related to DM levels. Our results identify a genetic component to chicken DM, and can guide breeding strategies.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Feminino , Galinhas/genética , Galinhas/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Ceco/microbiologia , Perfilação da Expressão Gênica/veterinária , Transcriptoma
18.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982941

RESUMO

Selection pressures driven by natural causes or human interference are key factors causing genome variants and signatures of selection in specific regions of the genome. Gamecocks were bred for cockfighting, presenting pea-combs, larger body sizes, stronger limbs, and higher levels of aggression than other chickens. In this study, we aimed to explore the genomic differences between Chinese gamecocks and commercial, indigenous, foreign, and cultivated breeds by detecting the regions or sites under natural or artificial selection using genome-wide association studies (GWAS), genome-wide selective sweeps based on the genetic differentiation index (FST), and transcriptome analyses. Ten genes were identified using GWAS and FST: gga-mir-6608-1, SOX5, DGKB, ISPD, IGF2BP1, AGMO, MEOX2, GIP, DLG5, and KCNMA1. The ten candidate genes were mainly associated with muscle and skeletal development, glucose metabolism, and the pea-comb phenotype. Enrichment analysis results showed that the differentially expressed genes between the Luxi (LX) gamecock and Rhode Island Red (RIR) chicken were mainly related to muscle development and neuroactive-related pathways. This study will help to understand the genetic basis and evolution of Chinese gamecocks and support the further use of gamecocks as an excellent breeding material from a genetic perspective.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Transcriptoma , Animais , Galinhas/genética , Perfilação da Expressão Gênica , Genômica , Polimorfismo de Nucleotídeo Único , Seleção Genética
19.
Animals (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36978553

RESUMO

Epigenetic modifications play an important role in regulating animal adaptation to external stress. To explore how DNA methylation regulates the expression levels of related genes during forced molting (FM) of laying hens, the hypothalamus and ovary tissues were analyzed at five periods using Whole-Genome Bisulfite Sequencing. The results show that methylation levels fluctuated differently in the exon, intron, 5'UTR, 3'UTR, promoter, and intergenic regions of the genome during FM. In addition, 16 differentially methylated genes (DMGs) regulating cell aging, immunity, and development were identified in the two reversible processes of starvation and redevelopment during FM. Comparing DMGs with differentially expressed genes (DEGs) obtained in the same periods, five hypermethylated DMGs (DSTYK, NKTR, SMOC1, SCAMP3, and ATOH8) that inhibited the expression of DEGs were found. Therefore, DMGs epigenetically modify the DEGs during the FM process of chickens, leading to the rapid closure and restart of their reproductive function and a re-increase in the egg-laying rate. Therefore, this study further confirmed that epigenetic modifications could regulate gene expression during FM and provides theoretical support for the subsequent optimization of FM technology.

20.
J Anim Sci Biotechnol ; 14(1): 26, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782272

RESUMO

BACKGROUND: Geese are among the most important poultry species in the world. The current generally accepted hypothesis is that the European domestic geese originated from greylag geese (Anser anser), and Chinese domestic geese have two origins, most of which originated from swan geese (Anser cygnoides), and the Yili goose originated from greylag geese. To explain the origin and demographic history of geese, we selected 14 goose breeds from Europe and China and wild populations of swan and greylag geese, and whole genome sequencing data were obtained for 74 samples. RESULTS: Population structure analysis and phylogenetic trees showed that the wild ancestor of Chinese domestic geese, except for Yili, is the swan geese, and the wild ancestor of Chinese Yili and European domestic geese is greylag geese. Analysis of the demographic history suggests that the domestication of Chinese geese occurred ~ 3499 years ago and that of the European geese occurred ~ 7552 years ago. Furthermore, gene flow was observed between domestic geese and their wild ancestors. Analysis of introgression showed that Yili geese had been introgressed by Chinese domestic geese, and the body size of Yili geese may be influenced by introgression events of some growth-related genes, including IGF-1. CONCLUSIONS: Our study provides evidence for the origin of geese at the genome-wide level and advances the understanding of the history of goose domestication and the traits affected by introgression events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA