Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biosens Bioelectron ; 257: 116296, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643550

RESUMO

Breathing is an important physiological activity of human body, which not only reflects the state of human movement, but also is one of the important health indicators. Breathing can change the concentration of water molecules, so monitoring humidity has gradually become a hot topic in modern research. In this study, a humidity sensing composite film with high sensitivity and short response time was made by using the mixture of graphene oxide (GO) and bacterial cellulose (BC) with simple dry film-forming method. L-ascorbic acid was used as reducing agent to reduce GO and improve the conductivity of GO/BC composite film (BG). The influence of different BC contents and the different reduction degree on the resistance change rate of composite film was investigated in details. The maximum resistance change rate of partially reduced BG humidity sensitive composite film reached up to 94%, and the response and recovery time were 13 s and 47 s respectively. Furthermore, the sensor shows obvious resistance change in noncontact sensing test and different breathing states. This kind of humidity sensitive film with fast response and high sensitivity has great potential in human health monitoring and noncontact sensing, and is of great significance in promoting health detection and intelligent life.


Assuntos
Técnicas Biossensoriais , Celulose , Grafite , Umidade , Grafite/química , Celulose/química , Humanos , Técnicas Biossensoriais/instrumentação , Bactérias/isolamento & purificação , Ácido Ascórbico/química , Ácido Ascórbico/análise
2.
Neural Regen Res ; 19(5): 1092-1097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862213

RESUMO

Endorepellin plays a key role in the regulation of angiogenesis, but its effects on angiogenesis after traumatic brain injury are unclear. This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice. Mice were randomly divided into four groups: sham, controlled cortical impact only, adeno-associated virus (AAV)-green fluorescent protein, and AAV-shEndorepellin-green fluorescent protein groups. In the controlled cortical impact model, the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+ proliferating endothelial cells and the functional microvessel density in mouse brain. These changes resulted in improved neurological function compared with controlled cortical impact mice. Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein. Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization, which may further improve neurobehavioral outcomes. Furthermore, an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control. Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor- and angiopoietin-1-related signaling pathways.

3.
ACS Nano ; 17(14): 13522-13532, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439503

RESUMO

Hydrogels are able to mimic the flexibility of biological tissues or skin, but they still cannot achieve satisfactory strength and toughness, greatly limiting their scope of application. Natural wood can offer inspiration for designing high-strength hydrogels attributed to its anisotropic structure. Herein, we propose an integrated strategy for efficient preparation of ultrastrong hydrogels using a salting-assisted prestretching treatment. The as-prepared poly(vinyl alcohol)/cellulose nanofiber hybrid hydrogels show distinct wood-like anisotropy, including oriented molecular fiber bundles and extended grain size, which endows materials with extraordinarily comprehensive mechanical properties of ultimate breaking strength exceeding 40 MPa, strain approaching 250%, and toughness exceeding 60 MJ·m-3, and outstanding tear resistance. Impressively, the breaking strength and toughness of the reswollen preoriented hydrogels approach 10 MPa and 25 MJ·m-3, respectively. In vitro and in vivo tests demonstrate that the reswollen hydrogels do not affect the growth and viability of the cells, nor do they cause the inflammation or rejection of the mouse tissue, implying extremely low biotoxicity and perfect histocompatibility, showcasing bright prospects for application in artificial ligaments or tendons. The strategy provided in this study can be generalized to a variety of biocompatible polymers for the fabrication of high-performance hydrogels with anisotropic structures.


Assuntos
Hidrogéis , Polímeros , Animais , Camundongos , Hidrogéis/química , Anisotropia , Álcool de Polivinil/química
4.
J Stroke Cerebrovasc Dis ; 31(10): 106693, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36054971

RESUMO

OBJECTIVES: Previous research has found that patients with immune thrombocytopenia (ITP) have an increased risk of thrombosis, such as venous thromboembolism (VT), ischemic stroke (IS)/transient ischemic attack (TIA), and cardiovascular disease (CVD), but the risk factors for stroke in patients with ITP have yet to be determined. This study aims to determine the risk factors and characteristics of ischemic stroke in patients with ITP. MATERIALS AND METHODS: This study included adults with incident primary ITP diagnosed in a tertiary medical center between 2010 and 2020. The t-test and Mann-Whitney U test were used to compare the variables between IS and non-IS groups, and the multivariate logistic regression model was employed to evaluate correlations. RESULTS: The study enrolled 1824 individuals, of whom 17 (0.93%) had IS, and 138 (1:8) were randomly chosen from 1807 non-IS patients. Age was found to be substantially associated with stroke in the multivariate analysis (OR 1.07, 95% CI: 1.026-1.116; p = 0.001). We found no correlation between platelet counts (PLT) (OR 1.013, 95% CI: 0.995-1.033; p = 0.164), mean platelet volume (MPV), platelet larger cell ratio (P-LCR), prothrombin time (PT) (OR 1.455, 95% CI 0.979-2.164; p = 0.064), activated partial thromboplastin time (APTT), D-dimer, fibrinogen or antinuclear antibody (ANA) and stroke. Of 17 ITP-IS patients, 7 (53.8%) were cryptogenic, greater than the general IS population. Three (23.1%) of them had an embolic pattern. CONCLUSION: For ITP patients, age was a significant predictor of stroke. ITP-IS patients had a more cryptogenic origin, with some showing an embolic pattern.


Assuntos
AVC Isquêmico , Púrpura Trombocitopênica Idiopática , Acidente Vascular Cerebral , Trombocitopenia , Adulto , Anticorpos Antinucleares , Fibrinogênio , Humanos , Púrpura Trombocitopênica Idiopática/complicações , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Trombocitopenia/complicações
5.
Carbohydr Polym ; 294: 119775, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868752

RESUMO

A series of chitosan (CS)-konjac glucomannan (KGM) foams with excellent thermal insulation property has been prepared using a directional freezing method, which exhibit high strain recovery, excellent piezoelectric generation and sensing properties. Layered lamellar or honeycomb morphologies in CS-KGM foams attributes a low thermal conductivity coefficient of ca. 0.03 W/(m·K). Bridge-like structure that mainly observed in CS-KGM foams from horizontal freezing endows them with excellent compression recovery performance even after 200 compression cycles. This along with piezoelectricity of CS contributes a long-lasting piezoelectric generation performance, ranging from 0.809 to 2.460 V during compression cycle process. Piezoelectric signals generated from pressing with certain strain and rate, finger taping and hand grasping can be sensed profoundly by CS-KGM. As thus, fully renewable source-based CS-KGM foams with outstanding thermal insulation and piezoelectric performance shows great potential in application as wearable thermal insulation and piezoelectric devices.


Assuntos
Quitosana , Quitosana/química , Congelamento , Condutividade Térmica
6.
J Mater Chem B ; 9(13): 3088-3096, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885670

RESUMO

Hydrogels with specially designed structures and adjustable properties have been considered as smart materials with multi-purpose application prospects, especially in the field of flexible sensors. However, most hydrogel-based sensors have low sensitivity, which inevitably affects their promotion in the market. Herein, a strain sensor comprising a poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) hybrid hydrogel sandwiched between two graphene layers was successfully constructed in a facile way, and it exhibited many excellent properties including extremely high sensitivity. The incorporation of glycerol ensured the good flexibility and anti-freezing performance of the hydrogel-based sensor even at -15 °C. The dynamic coordination bonds in the hydrogel-based sensor endowed it with excellent self-healing properties. In particular, the sandwich-structured hydrogel sensor showed a very high gauge factor (GF) value of 39 at the strain of 50%, which is much higher than those of most ordinary hydrogel-based strain sensors. A super stable signal value after 5000 strain cycles and a very short response time of 274 ms guaranteed the long-term usability and sensitivity of the hydrogel-based sandwich sensor. More importantly, the hydrogel-based sandwich sensor could detect both large and tiny human motions accurately and instantly in a series of real-time monitoring experiments, showing great potential for intelligent wearable electronic devices.


Assuntos
Resinas Acrílicas/química , Congelamento , Grafite/química , Hidrogéis/química , Álcool de Polivinil/química , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis/síntese química
7.
Curr Pharm Des ; 27(3): 332-344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33100197

RESUMO

Combination therapy involving different therapeutic strategies mostly provides more rapid and effective results as compared to monotherapy in diverse areas of clinical practice. The most worldwide famous acetylcholinesterase inhibitor (AChEIs) donepezil for its dominant role in Alzheimer's disease (AD) has also attracted the attention of many pharmaceuticals due to its promising pharmacological potencies such as neuroprotective, muscle relaxant, and sleep inducer. Recently, a combination of donepezil with other agents has displayed better desirable results in managing several disorders, including the most common Alzheimer's disease (AD). This study involves all the data regarding the therapeutic effect of donepezil in its combination with other agents and explains its therapeutic targets and mode of action. Furthermore, this review also puts light on the current status of donepezil with other agents in clinical trials. The combination therapy of donepezil with symptomatic relief drugs and disease-modifying agents opens a new road for treating multiple pathological disorders. To the best of our knowledge, this is the first report encircling all the pharmacologic effects of donepezil in its combination therapy with other agents and their current status in clinical trials.


Assuntos
Doença de Alzheimer , Indanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Donepezila , Humanos , Piperidinas/farmacologia
8.
Front Neurosci ; 15: 795539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975391

RESUMO

Background: Prediction and early diagnosis of Parkinson's disease (PD) and Parkinson's disease with depression (PDD) are essential for the clinical management of PD. Objectives: The present study aimed to develop a plasma Family with sequence similarity 19, member A5 (FAM19A5) and MRI-based radiomics nomogram to predict PD and PDD. Methods: The study involved 176 PD patients and 181 healthy controls (HC). Sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure FAM19A5 concentration in the plasma samples collected from all participants. For enrolled subjects, MRI data were collected from 164 individuals (82 in the PD group and 82 in the HC group). The bilateral amygdala, head of the caudate nucleus, putamen, and substantia nigra, and red nucleus were manually labeled on the MR images. Radiomics features of the labeled regions were extracted. Further, machine learning methods were applied to shrink the feature size and build a predictive radiomics signature. The resulting radiomics signature was combined with plasma FAM19A5 concentration and other risk factors to establish logistic regression models for the prediction of PD and PDD. Results: The plasma FAM19A5 levels (2.456 ± 0.517) were recorded to be significantly higher in the PD group as compared to the HC group (2.23 ± 0.457) (P < 0.001). Importantly, the plasma FAM19A5 levels were also significantly higher in the PDD subgroup (2.577 ± 0.408) as compared to the non-depressive subgroup (2.406 ± 0.549) (P = 0.045 < 0.05). The model based on the combination of plasma FAM19A5 and radiomics signature showed excellent predictive validity for PD and PDD, with AUCs of 0.913 (95% CI: 0.861-0.955) and 0.937 (95% CI: 0.845-0.970), respectively. Conclusion: Altogether, the present study reported the development of nomograms incorporating radiomics signature, plasma FAM19A5, and clinical risk factors, which might serve as potential tools for early prediction of PD and PDD in clinical settings.

9.
Cell Death Dis ; 11(1): 9, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907363

RESUMO

Blood-brain barrier damage is a critical pathological feature of ischemic stroke. Oligodendrocyte precursor cells are involved in maintaining blood-brain barrier integrity during the development. However, whether oligodendrocyte precursor cell could sustain blood-brain barrier permeability during ischemic brain injury is unknown. Here, we investigate whether oligodendrocyte precursor cell transplantation protects blood-brain barrier integrity and promotes ischemic stroke recovery. Adult male ICR mice (n = 68) underwent 90 min transient middle cerebral artery occlusion. After ischemic assault, these mice received stereotactic injection of oligodendrocyte precursor cells (6 × 105). Oligodendrocyte precursor cells transplantation alleviated edema and infarct volume, and promoted neurological recovery after ischemic stroke. Oligodendrocyte precursor cells reduced blood-brain barrier leakage via increasing claudin-5, occludin and ß-catenin expression. Administration of ß-catenin inhibitor blocked the beneficial effects of oligodendrocyte precursor cells. Wnt7a protein treatment increased ß-catenin and claudin-5 expression in endothelial cells after oxygen-glucose deprivation, which was similar to the results of the conditioned medium treatment of oligodendrocyte precursor cells on endothelial cells. We demonstrated that oligodendrocyte precursor cells transplantation protected blood-brain barrier in the acute phase of ischemic stroke via activating Wnt/ß-catenin pathway. Our results indicated that oligodendrocyte precursor cells transplantation was a novel approach to the ischemic stroke therapy.


Assuntos
Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/transplante , Via de Sinalização Wnt , Animais , Comportamento Animal , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/complicações , Edema Encefálico/patologia , Isquemia Encefálica/complicações , Diferenciação Celular/efeitos dos fármacos , Claudina-5/metabolismo , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/deficiência , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos Endogâmicos ICR , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oxigênio , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
10.
Stroke ; 51(2): 619-627, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31822249

RESUMO

Background and Purpose- Blood-brain barrier (BBB) disruption is a critical pathological feature after stroke. MicroRNA-126 (miR-126) maintains BBB integrity by regulating endothelial cell function during development. However, the role of miR-126-3p and -5p in BBB integrity after stroke is unclear. Here, we investigated whether miR-126-3p and -5p overexpression regulates BBB integrity after cerebral ischemia. Methods- A lentivirus carrying genes encoding miR-126-3p or -5p was stereotactically injected into adult male Institute of Cancer Research mouse brains (n=36). Permanent middle cerebral artery occlusion was performed 2 weeks after virus injection. Brain infarct volume, edema volume, and modified neurological severity score were assessed at 1 and 3 days after ischemia. Immunostaining of ZO-1 (zonula occludens-1) and occludin was used to evaluate BBB integrity. IL-1ß (interleukin-1ß), TNF-α (tumor necrosis factor-α), VCAM-1 (vascular cell adhesion molecule-1), and E-selectin expression levels were determined by real-time polymerase chain reaction and Western blot analysis. Results- The expression of miR-126-3p and -5p decreased at 1 and 3 days after ischemia (P<0.05). Injection of lentiviral miR-126-3p or -5p reduced brain infarct volume and edema volume (P<0.05) and attenuated the decrease in ZO-1/occludin protein levels and IgG leakage at 3 days after stroke (P<0.05). Injection of lentiviral miR-126-5p improved behavioral outcomes at 3 days after stroke (P<0.05). miR-126-3p and -5p overexpression downregulated the expression of proinflammatory cytokines IL-1ß and TNF-α and adhesion molecules VCAM-1 and E-selectin, as well as decreased MPO+ (myeloperoxidase positive) cell numbers at 3 days after ischemia (P<0.05). Conclusions- miR-126-3p and -5p overexpression reduced the expression of proinflammatory cytokines and adhesion molecules, and attenuated BBB disruption after ischemic stroke, suggesting that miR-126-3p and -5p are new therapeutic targets in the acute stage of stroke.


Assuntos
Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/genética , MicroRNAs/genética , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos , Ocludina/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/fisiopatologia
11.
J Cereb Blood Flow Metab ; 40(12): 2374-2386, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31865842

RESUMO

Endothelial progenitor cell transplantation is a potential therapeutic approach in brain ischemia. However, whether the therapeutic effect of endothelial progenitor cells is via affecting complement activation is unknown. We established a mouse focal ischemia model (n = 111) and transplanted endothelial progenitor cells into the peri-infarct region immediately after brain ischemia. Neurological outcomes and brain infarct/atrophy volume were examined after ischemia. Expression of C3, C3aR and pro-inflammatory factors were further examined to explore the role of endothelial progenitor cells in ischemic brain. We found that endothelial progenitor cells improved neurological outcomes and reduced brain infarct/atrophy volume after 1 to 14 days of ischemia compared to the control (p < 0.05). C3 and C3aR expression in the brain was up-regulated at 1 day up to 14 days (p < 0.05). Endothelial progenitor cells reduced astrocyte-derived C3 (p < 0.05) and C3aR expression (p < 0.05) after ischemia. Endothelial progenitor cells also reduced inflammatory response after ischemia (p < 0.05). Endothelial progenitor cell transplantation reduced astrocyte-derived C3 expression in the brain after ischemic stroke, together with decreased C3aR and inflammatory response contributing to neurological function recovery. Our results indicate that modulating complement C3/C3aR pathway is a novel therapeutic target for the ischemic stroke.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Complemento C3/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Astrócitos/metabolismo , Atrofia/patologia , Encéfalo/patologia , Infarto Encefálico/metabolismo , Lesões Encefálicas/patologia , Isquemia Encefálica/terapia , Estudos de Casos e Controles , Ativação do Complemento/fisiologia , Modelos Animais de Doenças , Células Progenitoras Endoteliais/transplante , Inflamação/metabolismo , Masculino , Camundongos , Recuperação de Função Fisiológica , Regulação para Cima
12.
Theranostics ; 9(10): 2910-2923, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244932

RESUMO

Rationale: Microglia play a critical role in modulating cell death and neurobehavioral recovery in response to brain injury either by direct cell-cell interaction or indirect secretion of trophic factors. Exosomes secreted from cells are well documented to deliver bioactive molecules to recipient cells to modulate cell function. Here, we aimed to identify whether M2 microglia exert neuroprotection after ischemic attack through an exosome-mediated cell-cell interaction. Methods: M2 microglia-derived exosomes were intravenously injected into the mouse brain immediately after middle cerebral artery occlusion. Infarct volume, neurological score, and neuronal apoptosis were examined 3 days after ischemic attack. Exosome RNA and target protein expression levels in neurons and brain tissue were determined for the mechanistic study. Results: Our results showed that the M2 microglia-derived exosomes were taken up by neurons in vitro and in vivo. M2 microglia-derived exosome treatment attenuated neuronal apoptosis after oxygen-glucose deprivation (p<0.05). In vivo results showed that M2 microglia-derived exosome treatment significantly reduced infarct volume and attenuated behavioral deficits 3 days after transient brain ischemia (p<0.05), whereas injection of miR-124 knockdown (miR-124k/d) M2 microglia-derived exosomes partly reversed the neuroprotective effect. Our mechanistic study further demonstrated that ubiquitin-specific protease 14 (USP14) was the direct downstream target of miR-124. Injection of miR-124k/d M2 exosomes plus the USP14 inhibitor, IU1, achieved comparable neuroprotective effect as injection of M2 exosomes alone. Conclusions: We demonstrated that M2 microglia-derived exosomes attenuated ischemic brain injury and promoted neuronal survival via exosomal miR-124 and its downstream target USP14. M2 microglia-derived exosomes represent a promising avenue for treating ischemic stroke.


Assuntos
Terapia Biológica/métodos , Lesões Encefálicas/prevenção & controle , Exossomos/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Fármacos Neuroprotetores/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Administração Intravenosa , Animais , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Camundongos , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
13.
CNS Neurosci Ther ; 25(9): 1030-1041, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31218845

RESUMO

INTRODUCTION: L-glutamine is an antioxidant that plays a role in a variety of biochemical processes. Given that oxidative stress is a key component of stroke pathology, the potential of L-glutamine in the treatment of ischemic stroke is worth exploring. AIMS: In this study, we investigated the effect and mechanisms of action of L-glutamine after cerebral ischemic injury. RESULTS: L-glutamine reduced brain infarct volume and promoted neurobehavioral recovery in mice. L-glutamine administration increased the expression of heat-shock protein 70 (HSP70) in astrocytes and endothelial cells. Such effects were abolished by the coadministration of Apoptozole, an inhibitor of the ATPase activity of HSP70. L-glutamine also reduced oxidative stress and neuronal apoptosis, and increased the level of superoxide dismutase, glutathione, and brain-derived neurotrophic factor. Cotreatment with Apoptozole abolished these effects. Cell culture study further revealed that the conditioned medium from astrocytes cultured with L-glutamine reduced the apoptosis of neurons after oxygen-glucose deprivation. CONCLUSION: L-glutamine attenuated ischemic brain injury and promoted functional recovery via HSP70, suggesting its potential in ischemic stroke therapy.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Encéfalo/metabolismo , Glutamina/uso terapêutico , Proteínas de Choque Térmico HSP70/biossíntese , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Glutamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
14.
Mol Ther Nucleic Acids ; 16: 15-25, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30825669

RESUMO

Studies demonstrate that microRNA-126 plays a critical role in promoting angiogenesis. However, its effects on angiogenesis following ischemic stroke are unclear. Here, we explored the effect of microRNA-126-3p and microRNA-126-5p on angiogenesis and neurogenesis after brain ischemia. We demonstrated that both microRNA (miRNA)-126-3p and microRNA-126-5p increased the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) compared with the scrambled miRNA control (p < 0.05). Transferring microRNA-126 into a mouse middle cerebral artery occlusion model via lentivirus, we found that microRNA-126 overexpression increased the number of CD31+/BrdU+ (5-bromo-2'-deoxyuridine-positive) proliferating endothelial cells and DCX+/BrdU+ neuroblasts in the ischemic mouse brain, improved neurobehavioral outcomes (p < 0.05), and reduced brain atrophy volume (p < 0.05) compared with control mice. Western blot results showed that AKT and ERK signaling pathways were activated in the lentiviral-microRNA-126-treated group (p < 0.05). Both PCR and western blot results demonstrated that tyrosine-protein phosphatase non-receptor type 9 (PTPN9) was decreased in the lentiviral-microRNA-126-treated group (p < 0.05). Dual-luciferase gene reporter assay also showed that PTPN9 was the direct target of microRNA-126-3p and microRNA-126-5p in the ischemic brain. We demonstrated that microRNA-126-3p and microRNA-126-5p promoted angiogenesis and neurogenesis in ischemic mouse brain, and further improved neurobehavioral outcomes. Our mechanistic study further showed that microRNA-126 mediated angiogenesis through directly inhibiting its target PTPN9 and activating AKT and ERK signaling pathways.

15.
CNS Neurosci Ther ; 25(6): 748-758, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30784219

RESUMO

INTRODUCTION: Dl-3-N-butylphthalide (NBP), a small molecule drug used clinically in the acute phase of ischemic stroke, has been shown to improve functional recovery and promote angiogenesis and collateral vessel circulation after experimental cerebral ischemia. However, the underlying molecular mechanism is unknown. AIMS: To explore the potential molecular mechanism of angiogenesis induced by NBP after cerebral ischemia. RESULTS: NBP treatment attenuated body weight loss, reduced brain infarct volume, and improved neurobehavioral outcomes during focal ischemia compared to the control rats (P < 0.05). NBP increased the number of CD31+ microvessels, the number of CD31+ /BrdU+ proliferating endothelial cells, and the functional vascular density (P < 0.05). Further study demonstrated that NBP also promoted the expression of vascular endothelial growth factor and angiopoietin-1 (P < 0.05), which was accompanied by upregulated sonic hedgehog expression in astrocytes in vivo and in vitro. CONCLUSION: NBP treatment promoted the expression of vascular endothelial growth factor and angiopoietin-1, induced angiogenesis, and improved neurobehavioral recovery. These effects were associated with increased sonic hedgehog expression after NBP treatment. Our results broadened the clinical application of NBP to include the later phase of ischemia.


Assuntos
Indutores da Angiogênese/farmacologia , Benzofuranos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Angiopoietina-1/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteínas Hedgehog , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Distribuição Aleatória , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
J Neuroinflammation ; 15(1): 135, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724240

RESUMO

BACKGROUND: Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). METHODS: Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 105 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. RESULTS: We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p < 0.05). IgG leakage, tight junction protein loss, and inflammatory cytokines IL-1ß, IL-6, and TNF-α reduced in mesenchymal stem cell-treated mice compared to the control group following ischemia (p < 0.05). After transplantation, MMP-9 was decreased in protein and activity levels as compared with controls (p < 0.05). Furthermore, myeloperoxidase-positive cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p < 0.05). CONCLUSION: The results showed that mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Masculino , Metaloproteinase 9 da Matriz/biossíntese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley
18.
Exp Cell Res ; 367(2): 222-231, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29614310

RESUMO

Oligodendrocyte precursor cells (OPCs) are needed for white matter repair after various brain injury. Means that promote OPC functions could benefit white matter recovery after injury. Chemokine CXCL12 and endothelial progenitor cells (EPCs) both have been shown to promote remyelination. We hypothesize that the beneficial effects of EPCs and CXCL12 can be harnessed by genetically modifying EPCs with cxcl12 to synergistically improve the functions of OPCs. In this work, CXCL12-EPC was generated using virus-mediated gene transfer. OPCs were cultured with CXCL12-EPC conditioned media (CM) to analyze its impact on the proliferation, migration, differentiation and survival properties of OPCs. We blocked or knocked-down the receptors of CXCL12, namely CXCR4 and CXCR7, respectively to investigate their functions in regulating OPCs properties. Results revealed that CXCL12-EPC CM further promoted OPCs behavioral properties and upregulated the expression of PDGFR-α, bFGF, CXCR4 and CXCR7 in OPCs, albeit following different time course. Blocking CXCR4 diminished the beneficial effects of CXCL12 on OPCs proliferation and migration, while knocking down CXCR7 inhibited OPCs differentiation. Our results supported that cxcl12 gene modification of EPCs further promoted EPCs' ability in augmenting the remyelination properties of OPCs, suggesting that CXCL12-EPC hold great potential in white matter repair.


Assuntos
Quimiocina CXCL12/genética , Oligodendroglia/citologia , Células-Tronco/citologia , Animais , Apoptose , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/metabolismo , Engenharia Genética , Oligodendroglia/metabolismo , Ratos Sprague-Dawley , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Células-Tronco/metabolismo
19.
Stem Cells Int ; 2017: 4364302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104593

RESUMO

Neural stem cell (NSC) transplantation is a promising treatment to improve the recovery after brain ischemia. However, how the survival, proliferation, migration, and differentiation of implanted NSC are influenced by endogenous neuronal activity remains unclear. In this work, we used optogenetic techniques to control the activity of striatal neurons and investigated how their activity affected the survival and migration of transplanted NSCs and overall neurological outcome after ischemic stroke. NSCs cultured from transgenic mice expressing fluorescent protein were transplanted into the peri-infarct region of the striatum after transient middle cerebral artery occlusion (tMCAO) surgery. The striatal neurons were excited or inhibited for 15 minutes daily via implanted optical fiber after tMCAO. The results revealed that mice which received NSC transplantation and optogenetic inhibition had smaller brain infarct volume and increased NSC migration compared to the NSC alone or PBS group (p < 0.05). In contrast, mice which received NSC transplantation and optogenetic excitation showed no difference in infarct volume and neurological behavior improvement compared to the PBS control group. In vitro experiments further revealed that the conditioned media from excited GABAergic neurons reduced NSC viability through paracrine mechanisms. Conclusion. Optogenetic inhibition of striatal neuronal activity further improved neurological recovery after NSC transplantation at the subacute phase after brain ischemia.

20.
Stroke ; 48(12): 3375-3383, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29146880

RESUMO

BACKGROUND AND PURPOSE: Striatal GABAergic neuron is known as a key regulator in adult neurogenesis. However, the specific role of striatal GABAergic neuronal activity in the promotion of neurological recovery after ischemic stroke remains unknown. Here, we used optogenetic approach to investigate these effects and mechanism. METHODS: Laser stimulation was delivered via an implanted optical fiber to inhibit or activate the striatal GABAergic neurons in Gad2-Arch-GFP or Gad2-ChR2-tdTomato mice (n=80) 1 week after 60-minute transient middle cerebral artery occlusion. Neurological severity score, brain atrophy volume, microvessel density, and cell morphological changes were examined using immunohistochemistry. Gene expression and protein levels of related growth factors were further examined using real-time polymerase chain reaction and Western blotting. RESULTS: Inhibiting striatal GABAergic neuronal activity improved functional recovery, reduced brain atrophy volume, and prohibited cell death compared with the control (P<0.05). Microvessel density and bFGF (basic fibroblast growth factor) expression in the inhibition group were also increased (P<0.05). In contrast, activation of striatal GABAergic neurons resulted in adverse effects compared with the control (P<0.05). Using cocultures of GABAergic neurons, astrocytes, and endothelial cells, we further demonstrated that the photoinhibition of GABAergic neuronal activity could upregulate bFGF expression in endothelial cells, depending on the presence of astrocytes. The conditioned medium from the aforementioned photoinhibited 3-cell coculture system protected cells from oxygen glucose deprivation injury. CONCLUSIONS: After ischemic stroke, optogenetic inhibition of GABAergic neurons upregulated bFGF expression by endothelial cells and promoted neurobehavioral recovery, possibly orchestrated by astrocytes. Optogenetically inhibiting neuronal activity provides a novel approach to promote neurological recovery.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Corpo Estriado/metabolismo , Antagonistas GABAérgicos/uso terapêutico , Neurônios GABAérgicos/patologia , Optogenética , Animais , Isquemia Encefálica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/biossíntese , Lasers , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Artéria Cerebral Média/patologia , Recuperação de Função Fisiológica , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA