Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(38): 50459-50473, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39258403

RESUMO

Insufficient drug accumulation in tumors severely limits the antitumor efficiency of hyaluronic acid (HA) nanomedicine in solid tumors due to superficial penetration depth, low cell uptake, and nonspecific drug release. Hence, we constructed a dual NO prodrug (alkynyl-JSK) and doxorubicin prodrug (cis-DOX)-conjugated HA nanoparticle (HA-DOX-JSK NPs), which achieved cascade-boosted drug delivery efficiency based on a relay strategy of NO-mediated deep tumor penetration─HA target CD44 tumor cell uptake─tumor microenvironment (TME)-responsive drug release. The nanoparticle demonstrated sustained and locoregionally GSH/GST-triggered NO release and GSH/pH-responsive DOX release in the tumor. The released NO first mediated collagen degradation, causing deep tumor penetration of nanoparticles in the dense extracellular matrix. Immediately, HA was relayed to enhance CD44-targeted tumor cell uptake, and then, the nanoparticles were finally triggered by specific TME to release DOX and NO in the deep tumor. Relying on the relayed delivery strategy, a significant improvement of DOX accumulation in tumors was realized. Moreover, NO depleted GSH-induced intracellular reactive oxygen species, enhancing DOX chemotherapy. Based on this strategy, the tumor inhibition rate in breast cancer was up to 87.8% in vivo. The relay drug-delivery HA system would greatly cascade-boost drug accumulation in deep tumors for efficient solid tumor therapy.


Assuntos
Doxorrubicina , Ácido Hialurônico , Nanopartículas , Estresse Oxidativo , Pró-Fármacos , Ácido Hialurônico/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Animais , Nanopartículas/química , Camundongos , Feminino , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hialuronatos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Nus , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
2.
RSC Adv ; 14(38): 27948-27956, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39224632

RESUMO

Exfoliated graphite platelets (EGPs) have attracted extensive attention owing to their exceptional combinations of thermal conductivity and mechanical properties. Mechanical exfoliation is a facile and high-throughput approach to produce single-layer or few-layer graphite platelets. Herein, octadecylamine (ODA)-grafted EGP (ODA@EGP) and subsequent polyethylene/ODA@EGP (PE/ODA@EGP) composites with different contents of ODA@EGPs were successfully prepared via ball-milling and melt-mixing methods, respectively. The thermal conductivity, crystallinity, and mechanical properties of the composites were investigated using tensile tests, the hot-wire method, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and thermogravimetric analysis (TGA). The results demonstrated that the thermal conductivity, mechanical properties, and thermal stability of the composites can be improved by regulating the additive contents of ODA@EGPs. When the content of ODA@EGPs was 10 wt%, the thermal conductivity of the composite reached up to 1.276 W (m-1 K-1), which is 216% higher than that of bare PE, while the tensile strength of the composite was 38.4% higher than that of PE. Additionally, thermal decomposition temperature increased by 16.2 °C. Therefore, the PE/ODA@EGP nanocomposites have great application potential in thermal management.

3.
Macromol Rapid Commun ; : e2400549, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137300

RESUMO

Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.

4.
Adv Healthc Mater ; : e2402297, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39175376

RESUMO

Bacterial infection-induced excessive inflammation is a major obstacle in diabetic wound healing. Nitric oxide (NO) exhibits significant antibacterial activity but is extremely deficient in diabetes. Hence, a near-infrared (NIR)-triggered NO release system is constructed through codelivery of polyarginine (PArg) and gold nanorods (Au) in an NIR-activatable methylene blue (MB) polypeptide-assembled nanovesicle (Au/PEL-PBA-MB/PArg). Upon NIR irradiation, the quenched MB in the nanovesicles is photoactivated to generate more reactive oxygen species (ROS) to oxidize PArg and release NO in an on-demand controlled manner. With the specific bacterial capture of phenylboronic acid (PBA), NO elevated membrane permeability and boosted bacterial vulnerability in the photothermal therapy (PTT) of the Au nanorods, which is displayed by superior mild PTT antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) at temperatures < 49.7 °C in vitro. Moreover, in vivo, the antibacterial nanovesicles greatly suppressed the burst of MRSA-induced excessive inflammation, NO relayed immunomodulated macrophage polarization from M1 to M2, and the excessive inflammatory phase is successfully transferred to the repair phase. In cooperation with angiogenesis by NO, tissue regeneration is accelerated in MRSA-infected diabetic wounds. Therefore, nanoplatform has considerable potential for accelerating the healing of infected diabetic wounds.

5.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124086

RESUMO

The development of fluorescent molecular imprinting sensors for direct, rapid, and sensitive detection of small organic molecules in aqueous systems has always presented a significant challenge in the field of detection. In this study, we successfully prepared a hydrophilic colloidal molecular imprinted polymer (MIP) with 2,4-dichlorophenoxyacetic acid (2,4-D) using a one-pot approach that incorporated polyglycerol methacrylate (PGMMA-TTC), a hydrophilic macromolecular chain transfer agent, to mediate reversible addition-fragmentation chain transfer precipitation polymerization (RAFTPP). To simplify the polymerization process while achieving ratiometric fluorescence detection, red fluorescent CdTe quantum dots (QDs) and green fluorescent nitrobenzodiazole (NBD) were introduced as fluorophores (with NBD serving as an enhancer to the template and QDs being inert). This strategy effectively eliminated background noise and significantly improved detection accuracy. Uniform-sized MIP microspheres with high surface hydrophilicity and incorporated ratiometric fluorescent labels were successfully synthesized. In aqueous systems, the hydrophilic ratio fluorescent MIP exhibited a linear response range from 0 to 25 µM for the template molecule 2,4-D with a detection limit of 0.13 µM. These results demonstrate that the ratiometric fluorescent MIP possesses excellent recognition characteristics and selectivity towards 2,4-D, thus, making it suitable for selective detection of trace amounts of pesticide 2,4-D in aqueous systems.

6.
Acta Biomater ; 183: 278-291, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838905

RESUMO

Anti-angiogenesis has emerged a promising strategy against colorectal cancer (CRC). However, the efficacy of anti-angiogenic therapy is greatly compromised by the up-regulated autophagy levels resulting from the evolutionary resistance mechanism and the presence of Fusobacterium nucleatum (F. nucleatum) in CRC. Herein, we report a cationic polymer capable of blocking autophagic flux to deliver plasmid DNA (pDNA) encoding soluble FMS-like tyrosine kinase-1 (sFlt-1) for enhanced anti-angiogenic therapy against F. nucleatum-associated CRC. The autophagy-inhibiting cationic polymer, referred to as PNHCQ, is synthesized by conjugating hydroxychloroquine (HCQ) into 3,3'-diaminodipropylamine-pendant poly(ß-benzyl-L-aspartate) (PAsp(Nors)), which can be assembled and electrostatically interacted with sFlt-1 plasmid to form PNHCQ/sFlt-1 polyplexes. Hydrophobic HCQ modification not only boosts transfection efficiency but confers autophagy inhibition activity to the polymer. Hyaluronic acid (HA) coating is further introduced to afford PNHCQ/sFlt-1@HA for improved tumor targeting without compromising on transfection. Consequently, PNHCQ/sFlt-1@HA demonstrates significant anti-tumor efficacy in F. nucleatum-colocalized HT29 mouse xenograft model by simultaneously exerting anti-angiogenic effects through sFlt-1 expression and down-regulating autophagy levels exacerbated by F. nucleatum challenge. The combination of anti-angiogenic gene delivery and overall autophagy blockade effectively sensitizes CRC tumors to anti-angiogenesis, providing an innovative approach for enhanced anti-angiogenic therapy against F. nucleatum-resident CRC. STATEMENT OF SIGNIFICANCE: Up-regulated autophagy level within tumors is considered responsible for the impaired efficacy of clinic antiangiogenic therapy against CRC colonized with pathogenic F. nucleatum. To tackle this problem, an autophagy-inhibiting cationic polymer is developed to enable efficient intracellular delivery of plasmid DNA encoding soluble FMS-like tyrosine kinase-1 (sFlt-1) and enhance anti-angiogenic therapy against F. nucleatum-associated CRC. HA coating that can be degraded by tumor-enriching hyaluronidase is further introduced for improved tumor targeting without compromising transfection efficiency. The well-orchestrated polyplexes achieve considerable tumor accumulation, efficient in vivo transfection, and effectively reinforce the sensitivity of CRC to the sFlt-1-derived anti-angiogenic effects by significantly blocking overall autophagy flux exacerbated by F. nucleatum challenge, thus harvesting robust antitumor outcomes against F. nucleatum-resident CRC.


Assuntos
Autofagia , Neoplasias Colorretais , Fusobacterium nucleatum , Fusobacterium nucleatum/efeitos dos fármacos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Humanos , Técnicas de Transferência de Genes , Camundongos Nus , Camundongos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Terapia Genética/métodos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Plasmídeos , Inibidores da Angiogênese/farmacologia , Hidroxicloroquina/farmacologia , Infecções por Fusobacterium/tratamento farmacológico , Infecções por Fusobacterium/complicações
7.
Small ; : e2401387, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773909

RESUMO

Bulk hexagonal boron nitride (h-BN) ceramics with structural integrity, high-temperature resistance and low expansion rate are expected for multifunctional applications in extreme conditions. However, due to its sluggish self-diffusion and intrinsic inertness, it remains a great challenge to overcome high-energy barrier for h-BN powder sintering. Herein, a cross-linking and pressureless-welding strategy is reported to produce bulk boron nitride nanosheets (BNNSs) ceramics with well-crystalized and dense B-N covalent-welding frameworks. The essence of this synthesis strategy lies in the construction of >B─O─H2C─H2C─H2N:→B< bond bridge connection structure among hydroxyl functionalized BNNSs (BNNSs-OH) using bifunctional monoethanolamine (MEA) as cross-linker through esterification and intermolecular-coordination reactions. The prepared BNNSs-interlaced ceramics have densities not less than 1.2 g cm-3, and exhibit exceptional mechanical robustness and resiliency, excellent thermomechanical stability, ultra-low linear thermal expansion coefficient of 0.06 ppm °C-1, and high thermal diffusion coefficient of 4.76 mm2 s-1 at 25 °C and 3.72 mm2 s-1 at 450 °C. This research not only reduces the free energy barrier from h-BN particles to bulk ceramics through facile multi-step physicochemical reaction, but also stimulates further exploration of multifunctional applications for bulk h-BN ceramics over a wide temperature range.

8.
J Mater Chem B ; 12(16): 3947-3958, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38586917

RESUMO

Colorectal cancer (CRC) occurs in the colorectum and ranks second in the global incidence of all cancers, accounting for one of the highest mortalities. Although the combination chemotherapy regimen of 5-fluorouracil (5-FU) and platinum(IV) oxaliplatin prodrug (OxPt) is an effective strategy for CRC treatment in clinical practice, chemotherapy resistance caused by tumor-resided Fusobacterium nucleatum (Fn) could result in treatment failure. To enhance the efficacy and improve the biocompatibility of combination chemotherapy, we developed an antibacterial-based nanodrug delivery system for Fn-associated CRC treatment. A tumor microenvironment-activated nanomedicine 5-FU-LA@PPL was constructed by the self-assembly of chemotherapeutic drug derivatives 5-FU-LA and polymeric drug carrier PPL. PPL is prepared by conjugating lauric acid (LA) and OxPt to hyperbranched polyglycidyl ether. In principle, LA is used to selectively combat Fn, inhibit autophagy in CRC cells, restore chemosensitivity of 5-FU as well as OxPt, and consequently enhance the combination chemotherapy effects for Fn-associated drug-resistant colorectal tumor. Both in vitro and in vivo studies exhibited that the tailored nanomedicine possessed efficient antibacterial and anti-tumor activities with improved biocompatibility and reduced non-specific toxicity. Hence, this novel anti-tumor strategy has great potential in the combination chemotherapy of CRC, which suggests a clinically relevant valuable option for bacteria-associated drug-resistant cancers.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Fluoruracila , Ácidos Láuricos , Fluoruracila/farmacologia , Fluoruracila/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Ácidos Láuricos/química , Ácidos Láuricos/farmacologia , Animais , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Fusobacterium nucleatum/efeitos dos fármacos , Oxaliplatina/farmacologia , Oxaliplatina/química , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Portadores de Fármacos/química
9.
Nano Lett ; 23(22): 10608-10616, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948661

RESUMO

The rarity of efficient tools with spatiotemporal resolution and biocompatibility capabilities remains a major challenge for further progress and application of signaling manipulation. Herein, biomimetic conjugated oligomeric nanoparticles (CM-CONs) were developed to precisely modulate blood glucose homeostasis via the two-pronged activation of calcium channels. Under near-infrared (NIR) laser irradiation, CM-CONs efficiently generate local heat and reactive oxygen species (ROS), thereby simultaneously activating thermosensitive transient receptor potential V1 (TRPV1) and ROS-sensitive transient receptor potential A1 (TRPA1) calcium channels in small intestinal endocrine cells. The activation of the channels mediates inward calcium flow and then promotes glucagon-like peptide (GLP-1) secretion. Both in vitro and in vivo studies indicate that CM-CONs effectively regulate glucose homeostasis in diabetic model mice upon NIR light irradiation. This work develops a two-pronged attack strategy for accurately controlling blood glucose homeostasis, holding great prospects in the treatment for diabetes.


Assuntos
Glicemia , Nanopartículas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Canais de Cálcio , Homeostase , Cálcio/metabolismo
10.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765621

RESUMO

In this paper, a polyacrylic elastomer latex with butyl acrylate (BA) as the core and methyl methacrylate (MMA) copolymerized with glycidyl methacrylate (GMA) as the shell, named poly(BA-MMA-GMA) (PBMG), was synthesized by seeded emulsion polymerization. Cellulose nanocrystal (CNC) was dispersed in the polyacrylic latex to prepare PBMG/CNC dispersions with different CNC contents. The dried product was mixed with polylactic acid (PLA) to fabricate PLA/PBMG/CNC blends. The addition of PBMG and PBMG/CNC improved the mechanical properties of the PLA matrix. Differential scanning calorimetry (DSC) was used to investigate the non-isothermal crystallization kinetics. The Avrami equation modified by the Jeziorny, Ozawa and Mo equations was used to analyze the non-isothermal crystallization kinetics of PLA and its blends. Analysis of the crystallization halftime of non-isothermal conditions indicated that the overall rate of crystallization increased significantly at 1 wt% content of CNC. This seemed to result from the increase of nucleation density and the acceleration of segment movement in the presence of the CNC component. This phenomenon was verified by polarizing microscope observation.

11.
Opt Lett ; 48(17): 4697-4700, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656589

RESUMO

Four phthalocyanine derivatives with different electron donor and acceptor substituents (B1, B2, B3, and B4) were synthesized by a solid-phase melting method. The influence of substituent type on the nonlinear optical properties of the materials was investigated in detail. In the case of similar conjugated structures, B3, which has amino electron-donor groups, presents high intramolecular charge transfer, a low energy gap (2.05 eV), and good nonlinear optical properties. Compared with B3, B4 has a larger π-conjugated structure and its energy gap is 0.04 eV smaller. Moreover, B4 has stronger reverse saturation absorption (7 × 10-12 m/W) and optical limiting performance. The four phthalocyanine derivatives exhibit third harmonic generation (THG) characteristics. Furthermore, the third harmonic strengths of B1, B2, B3, and B4 are 4 times, 9 times, 11 times, and 21 times that of SiO2, respectively. So, B4 has the best application potential in laser protection and frequency conversion.

12.
Adv Healthc Mater ; 12(31): e2301954, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722719

RESUMO

Cell fate can be efficiently modulated by switching ion channels. However, the precise regulation of ion channels in cells, especially in specific organelles, remains challenging. Herein, biomimetic second near-infrared (NIR-II) responsive conjugated oligomer nanoparticles with dual-targeted properties are designed and prepared to modulate the ion channels of mitochondria to selectively kill malignant cells in vivo. Upon 1060 nm laser irradiation, the mitochondria-located nanoparticles photothermally release a specific ion inhibitor of the potassium channel via a temperature-sensitive liposome, thus altering the redox balance and pathways of mitochondria. NIR-II responsive nanoparticles can effectively regulate the potassium channels of mitochondria and fully suppress tumor growth. This work provides a new modality based on the NIR-II nanoplatform to regulate ion channels in specific organelles and proposes an effective therapeutic mechanism for malignant tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Medicina de Precisão , Canais de Potássio , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/metabolismo , Mitocôndrias , Linhagem Celular Tumoral , Fototerapia
13.
ACS Appl Mater Interfaces ; 15(31): 37845-37854, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489898

RESUMO

Developing effective synthetic strategies as well as broadening functionalities for zwitterionic materials that comprise moieties with equimolar cationic and anionic groups still remains a huge challenge. Herein, we develop two zwitterionic vinylene-linked covalent organic frameworks (Zi-VCOF-1 and Zi-VCOF-2) that are a type of novel hydrophilic material. Zi-VCOF-1 and Zi-VCOF-2 are obtained directly through the convenient Knoevenagel condensation of new sulfonic-pyridinium zwitterionic monomers with aromatic aldehyde derivatives. This is the first report on zwitterionic COFs being constructed by the bottom-up functionalization approach from predesigned zwitterionic monomers. Both Zi-VCOFs exhibit a high photocatalytic hydrogen evolution rate (HER) because of their appropriate optical property and outstanding hydrophilicity. Specifically, Zi-VCOF-1 and Zi-VCOF-2 show photocatalytic HER of 13,547 and 5057 µmol h-1 g-1, respectively. Interestingly, the photocatalytic HER of Zi-VCOF-1 is about 2.68 times of that of Zi-VCOF-2, although they differ by only one methyl group in sulfonic-pyridinium zwitterionic pairs. The photocatalytic HER of Zi-VCOF-1 is not only the highest in the vinylene-linked COFs but also outstanding among the most reported COFs. This is the first application of zwitterionic COFs for photocatalytic hydrogen evolution, which would open a new frontier in zwitterionic COFs and be helpful for the design of other photocatalytic materials.

14.
ACS Appl Mater Interfaces ; 15(30): 36738-36747, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487247

RESUMO

Shaping covalent organic frameworks (COFs) into macroscopic objects for practical application remains a huge challenge. Herein, a new thiadiazole-derived COF macroscopic ultralight aerogel (NNS-VCOF) was prepared through acid-catalyzed aldol condensation between 2,5-dimethyl-1,3,4-thiadiazole and a tritopic aromatic aldehyde derivative. NNS-VCOF aerogel shows extremely low density (ca. 0.020 g cm-3), excellent mechanical properties (compression modulus of 16.65 kPa), thermal insulation properties (low thermal conductivity of 0.03270 W m-1 K-1 at 25 °C), and flame retardancy (quickly self-extinguishing after ignition) due to its three-dimensional sponge-like architecture and special nitrogen heterocyclic framework. To our delight, NNS-VCOF aerogel not only can be used as an outstanding macroscopic material but also shows efficient photocatalytic hydrogen evolution properties in a powder state because of the superhydrophilicity and appropriate optical properties.

15.
Polymers (Basel) ; 15(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514392

RESUMO

It is crucial to develop sensitive and accurate sensing strategies to detect H2O2 and glucose in biological systems. Herein, biocompatible iron-coordinated L-lysine-based hydrogen peroxide (H2O2)-mimetic enzymes (Lys-Fe-NPs) were prepared by precipitation polymerization in aqueous solution. The coordinated Fe2+ ion acted as centers of peroxidase-like enzymes of Lys-Fe-NPs, and the catalytic activity was evaluated via the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Therefore, a sensitive colorimetric detection sensor for H2O2 was constructed with a linear range of 1 to 200 µM and a detection limit of 0.51 µM. The same method could also be applied to highly sensitive and selective detection of glucose, with a linear range of 0.5 to 150 µM and a detection limit of 0.32 µM. In addition, an agarose-based hydrogel biosensor colorimetric was successfully implemented for visual assessment and quantitative detection of glucose. The design provided a novel platform for constructing stable and nonprotein enzyme mimics with lysine and showed great potential applications in biorelevant assays.

16.
Appl Opt ; 62(10): 2493-2500, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132797

RESUMO

The pyrene derivative (PD) was synthesized with pyrene-1-carboxaldehyde and p-aminoazobenzene by a Schiff base reaction. Then the obtained PD was dispersed in polyurethane (PU) prepolymer to prepare polyurethane/pyrene derivative PU/PD materials with good transmittance. The nonlinear optical (NLO) performances of the PD and PU/PD materials were studied by the Z-scan technique under picosecond and femtosecond laser pulses. The PD has reverse saturable absorption (RSA) properties under the excitation of 532 nm 15 ps pulses, 650 and 800 nm 180 fs pulses, and a low optical limiting (OL) threshold (0.01J/c m 2). The PU/PD has a larger RSA coefficient than that of the PD under 532 nm 15 ps pulses. With the enhanced RSA, the PU/PD materials exhibit excellent OL (OL) performance. Good NLO properties, high transparency, and easy processing performances make the PU/PD an excellent choice for use in OL and laser protection fields.

17.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904305

RESUMO

A europium complex with double bonds was synthesized with crotonic acid as the ligand and a europium ion as the center ion. Then, the obtained europium complex was added to synthesized poly(urethane-acrylate) macromonomers to prepare the bonded polyurethane-europium materials by the polymerization of the double bonds in the complex and the poly(urethane-acrylate) macromonomers. The prepared polyurethane-europium materials had high transparency, good thermal stability and good fluorescence. The storage moduli of polyurethane-europium materials are obviously higher than those of pure polyurethane. Polyurethane-europium materials exhibit bright red light with good monochromaticity. The light transmittance of the material decreases slightly with increases in the europium complex content, but the luminescence intensity gradually increases. In particular, polyurethane-europium materials possess a long luminescence lifetime, which has potential applications for optical display instruments.

18.
ACS Appl Mater Interfaces ; 15(10): 12750-12765, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852940

RESUMO

The application of photodynamic therapy (PDT) has attracted remarkable interest in cancer treatment because of the advantages of noninvasiveness and spatiotemporal selectivity. However, the PDT efficiency is considerably limited by photosensitizer (PS) quenching and severe hypoxia in solid tumors. Herein, a kind of near infrared (NIR)-activatable methylene blue (MB) peptide nanocarrier was developed for codelivery of nitric oxide (NO) prodrug JSK, expecting a cascade of reactive oxygen species (ROS) amplification-mediated antitumor PDT. In detail, MB was conjugated to water-soluble polyethylene glycol-polylysine (PEG-PLL) through NIR-photocleavable 10-N-carbamoyl bonds, and the subsequent amphiphilic conjugates (mPEG-PLL-MB) self-assembled into nanoparticles (NPs), which allowed JSK codelivery via π-π stacking interactions. MB in quenched state in mPEG-PLL-MB/JSK NPs could be photoactivated by NIR light locoregionally in a controlled manner due to the photocleavage of carbamoyl bonds. Apart from ROS production, assembly disturbance and even disintegration of mPEG-PLL-MB/JSK occurred along with MB activation that subsequently freed JSK, which was further triggered by intracellularly overexpressed glutathione (GSH) and glutathione S-transferase (GST) to sustain the release of NO. NO then served as a hypoxia relief agent through inhibition of cellular respiration to economize O2, cooperating with MB activation and GSH depletion, which synergistically enabled a cascade of ROS amplification to augment PDT for mitochondrial apoptosis-mediated tumor inhibition in vitro and in vivo. Therefore, this pioneering strategy of cascade amplification of ROS addressed the key issues of PS inactivation, hypoxia resistance, and ROS neutralization in a three-pronged approach, which hold great promise in efficient antitumor PDT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio , Azul de Metileno/farmacologia , Azul de Metileno/química , Óxido Nítrico , Pró-Fármacos/farmacologia , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
19.
Adv Sci (Weinh) ; 10(11): e2206585, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36776018

RESUMO

Bacterial infection often induces chronic repair of wound healing owing to aggravated inflammation. Hydrogel dressing exhibiting intrinsic antibacterial activity may substantially reduce the use of antibiotics for infected wound management. Hence, a versatile hydrogel dressing (rGB/QCS/PDA-PAM) exhibiting skin adaptiveness on dynamic wounds and  mild photothermal antibacterial activity is developed for safe and efficient infected wound treatment. Phenylboronic acid-functionalized graphene (rGB) and oxadiazole-decorated quaternary carboxymethyl chitosan (QCS) are incorporated into a polydopamine-polyacrylamide (PDA-PAM) network with multiple covalent and noncovalent bonds, which conferred the hydrogel with flexible mechanical properties, strong tissue adhesion and excellent self-healing ability on the dynamic wounds. Moreover, the glycocalyx-mimicking phenylboronic acid on the surface of rGB enables the hydrogel to specifically capture bacteria. The enhanced membrane permeability of QCS enhanced bacterial vulnerability to photothermal therapy(PTT), which is demonstrated by efficient mild PTT antibacteria against methicillin-resistant Staphylococcus aureus in vitro and in vivo at temperatures of <49.6 °C. Consequently, the hydrogel demonstrate accelerated tissue regeneration on MRSA-infected wound in vivo, with an intact epidermis, abundant collagen deposition and prominent angiogenesis. Therefore, rGB/QCS/PDA-PAM is a versatile hydrogel dressing exhibiting inherent antibacterial activity and has considerable potential in treating wounds infected with drug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Hidrogéis , Antibacterianos/farmacologia , Bandagens , Cicatrização
20.
Chemistry ; 29(1): e202202787, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36196504

RESUMO

The development of new vinylene-linked covalent organic frameworks (COFs) with special ionic structure and high stability is challenging. Herein, we report a facile, general method for constructing ionic vinylene-linked thiopyrylium-based COFs from 2,4,6-trimethylpyrylium tetrafluoroborate and other common reagents by means of acid-catalyzed Aldol condensation. Besides, pyrylium-, and pyridinium-based COFs also can be prepared from the same monomer under slightly different reaction conditions. The COFs exhibited uniform nanofibrous morphologies with excellent crystallinities, special ionic structures, well-defined nanochannels, and high specific surface areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA