Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(33): 18573-18584, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39105709

RESUMO

Isoflavone is a secondary metabolite of the soybean phenylpropyl biosynthesis pathway with physiological activity and is beneficial to human health. In this study, the isoflavone content of 205 soybean germplasm resources from 3 locations in 2020 showed wide phenotypic variation. A joint genome-wide association study (GWAS) and weighted gene coexpression network analysis (WGCNA) identified 33 single-nucleotide polymorphisms and 11 key genes associated with soybean isoflavone content. Gene ontology enrichment analysis, gene coexpression, and haplotype analysis revealed natural variations in the Glyma.12G109800 (GmOMT7) gene and promoter region, with Hap1 being the elite haplotype. Transient overexpression and knockout of GmOMT7 increased and decreased the isoflavone content, respectively, in hairy roots. The combination of GWAS and WGCNA effectively revealed the genetic basis of soybean isoflavone and identified potential genes affecting isoflavone synthesis and accumulation in soybean, providing a valuable basis for the functional study of soybean isoflavone.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Glycine max , Isoflavonas , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/química , Isoflavonas/metabolismo , Isoflavonas/análise , Sementes/genética , Sementes/química , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes
2.
Front Plant Sci ; 14: 1193044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346126

RESUMO

Introduction: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential key enzyme in the glycolytic pathway and plays an important role in stress responses. Although GAPDH family genes have been found in different plant species, the determination of their gene family analysis and their functional roles in soybean are still unknown. Methods: In this study, gene sequence and expression data were obtained using online tools, and systematic evolution, expression profile analysis, and qRT-PCR analysis were conducted. Results and Discussion: Here a total of 16 GmGAPDH genes were identified on nine chromosomes, which were classified into three clusters. Additionally, all GmGAPDH genes harbor two highly conserved domains, including Gp_dh_N (PF00044) and Gp_dh_C (PF02800). The qRTPCR analysis also showed that most GmGAPDH genes significantly responded to multiple abiotic stresses, including NaHCO3, polyethylene glycol, cold, and salt. Among them, GmGAPDH14 was extraordinarily induced by salt stress. The GmGAPDH14 gene was cloned and overexpressed through soybean hair roots. The overexpressed transgenic soybean plants of the GmGAPDH14 gene have also shown better growth than that of control plants. Moreover, the overexpressed transgenic plants of GmGAPDH14 gene had higher activities of superoxide dismutase but lower malonaldehyde (MDA) content than those of control plants under salt stress. Meanwhile, a total of four haplotypes were found for the GmGAPDH14 gene, and haplotypes 2, 3, and 4 were beneficial for the tolerance of soybean to salt stress. These results suggest that the GmGAPDH14 gene might be involved in the process of soybean tolerance to salt stress. The results of this study will be valuable in understanding the role of GAPDH genes in the abiotic stress response of soybean.

3.
Biotechnol Biofuels Bioprod ; 16(1): 70, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098528

RESUMO

BACKGROUND: Soybean (Glycine max (L.) Merr) is an important source of human food, animal feed, and bio-energy. Although the genetic network of lipid metabolism is clear in Arabidopsis, the understanding of lipid metabolism in soybean is limited. RESULTS: In this study, 30 soybean varieties were subjected to transcriptome and metabolome analysis. In total, 98 lipid-related metabolites were identified, including glycerophospholipid, alpha-linolenic acid, linoleic acid, glycolysis, pyruvate, and the sphingolipid pathway. Of these, glycerophospholipid pathway metabolites accounted for the majority of total lipids. Combining the transcriptomic and metabolomic analyses, we found that 33 lipid-related metabolites and 83 lipid-related genes, 14 lipid-related metabolites and 17 lipid-related genes, and 12 lipid-related metabolites and 25 lipid-related genes were significantly correlated in FHO (five high-oil varieties) vs. FLO (five low-oil varieties), THO (10 high-oil varieties) vs. TLO (10 low-oil varieties), and HO (15 high-oil varieties) vs. LO (15 low-oil varieties), respectively. CONCLUSIONS: The GmGAPDH and GmGPAT genes were significantly correlated with lipid metabolism genes, and the result revealed the regulatory relationship between glycolysis and oil synthesis. These results improve our understanding of the regulatory mechanism of soybean seed oil improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA