RESUMO
Isoprene affects new particle formation rates in environments and experiments also containing monoterpenes. For the most part, isoprene reduces particle formation rates, but the reason is debated. It is proposed that due to its fast reaction with OH, isoprene may compete with larger monoterpenes for oxidants. However, by forming a large amount of peroxy-radicals (RO2), isoprene may also interfere with the formation of the nucleating species compared to a purely monoterpene system. We explore the RO2 cross reactions between monoterpene and isoprene oxidation products using the radical Volatility Basis Set (radical-VBS), a simplified reaction mechanism, comparing with observations from the CLOUD experiment at CERN. We find that isoprene interferes with covalently bound C20 dimers formed in the pure monoterpene system and consequently reduces the yields of the lowest volatility (Ultra Low Volatility Organic Carbon, ULVOC) VBS products. This in turn reduces nucleation rates, while having less of an effect on subsequent growth rates.
RESUMO
Pure biogenic new particle formation (NPF) induced by highly oxygenated organic molecules (HOMs) could be an important mechanism for pre-industrial aerosol formation. However, it has not been unambiguously confirmed in the ambient due to the scarcity of truly pristine continental locations in the present-day atmosphere or the lack of chemical characterization of NPF precursors. Here, we report ambient observations of pure biogenic HOM-driven NPF over a peatland in southern Finland. Meteorological decoupling processes formed an "air pocket" (i.e., a very shallow surface layer) at night and favored NPF initiated entirely by biogenic HOM from this peatland, whose atmospheric environment closely resembles that of the pre-industrial era. Our study sheds light on pre-industrial aerosol formation, which represents the baseline for estimating the impact of present and future aerosol on climate, as well as on future NPF, the features of which may revert toward pre-industrial-like conditions due to air pollution mitigation.
RESUMO
The Arctic environment is transforming rapidly due to climate change. Aerosols' abundance and physicochemical characteristics play a crucial, yet uncertain, role in these changes due to their influence on the surface energy budget through direct interaction with solar radiation and indirectly via cloud formation. Importantly, Arctic aerosol properties are also changing in response to climate change. Despite their importance, year-round measurements of their characteristics are sparse in the Arctic and often confined to lower latitudes at Arctic land-based stations and/or short high-latitude summertime campaigns. Here, we present unique aerosol microphysics and chemical composition datasets collected during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, in the central Arctic. These datasets, which include aerosol particle number concentrations, size distributions, cloud condensation nuclei concentrations, fluorescent aerosol concentrations and properties, and aerosol bulk chemical composition (black carbon, sulfate, nitrate, ammonium, chloride, and organics) will serve to improve our understanding of high-Arctic aerosol processes, with relevance towards improved modelling of the future Arctic (and global) climate.
RESUMO
Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of ß-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei.
RESUMO
Atmospheric gaseous elemental mercury (GEM) concentrations in the Arctic exhibit a clear summertime maximum, while the origin of this peak is still a matter of debate in the community. Based on summertime observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition and a modeling approach, we further investigate the sources of atmospheric Hg in the central Arctic. Simulations with a generalized additive model (GAM) show that long-range transport of anthropogenic and terrestrial Hg from lower latitudes is a minor contribution (~2%), and more than 50% of the explained GEM variability is caused by oceanic evasion. A potential source contribution function (PSCF) analysis further shows that oceanic evasion is not significant throughout the ice-covered central Arctic Ocean but mainly occurs in the Marginal Ice Zone (MIZ) due to the specific environmental conditions in that region. Our results suggest that this regional process could be the leading contributor to the observed summertime GEM maximum. In the context of rapid Arctic warming and the observed increase in width of the MIZ, oceanic Hg evasion may become more significant and strengthen the role of the central Arctic Ocean as a summertime source of atmospheric Hg.
RESUMO
The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 - 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer.
Assuntos
Atmosfera , Óxido Nítrico , Monoterpenos , Oxirredução , AerossóisRESUMO
Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchloric (HClO4) acids, although these two species have not been detected in the atmosphere. Here, we present atmospheric observations of gas-phase HClO3 and HClO4. Significant levels of HClO3 were observed during springtime at Greenland (Villum Research Station), Ny-Ålesund research station and over the central Arctic Ocean, on-board research vessel Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign, with estimated concentrations up to 7 × 106 molecule cm-3. The increase in HClO3, concomitantly with that in HClO4, was linked to the increase in bromine levels. These observations indicated that bromine chemistry enhances the formation of OClO, which is subsequently oxidized into HClO3 and HClO4 by hydroxyl radicals. HClO3 and HClO4 are not photoactive and therefore their loss through heterogeneous uptake on aerosol and snow surfaces can function as a previously missing atmospheric sink for reactive chlorine, thereby reducing the chlorine-driven oxidation capacity in the Arctic boundary layer. Our study reveals additional chlorine species in the atmosphere, providing further insights into atmospheric chlorine cycling in the polar environment.
RESUMO
Despite the key role of the Arctic in the global Earth system, year-round in-situ atmospheric composition observations within the Arctic are sparse and mostly rely on measurements at ground-based coastal stations. Measurements of a suite of in-situ trace gases were performed in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. These observations give a comprehensive picture of year-round near-surface atmospheric abundances of key greenhouse and trace gases, i.e., carbon dioxide, methane, nitrous oxide, ozone, carbon monoxide, dimethylsulfide, sulfur dioxide, elemental mercury, and selected volatile organic compounds (VOCs). Redundancy in certain measurements supported continuity and permitted cross-evaluation and validation of the data. This paper gives an overview of the trace gas measurements conducted during MOSAiC and highlights the high quality of the monitoring activities. In addition, in the case of redundant measurements, merged datasets are provided and recommended for further use by the scientific community.
RESUMO
Frequency and intensity of warm and moist air-mass intrusions into the Arctic have increased over the past decades and have been related to sea ice melt. During our year-long expedition in the remote central Arctic Ocean, a record-breaking increase in temperature, moisture and downwelling-longwave radiation was observed in mid-April 2020, during an air-mass intrusion carrying air pollutants from northern Eurasia. The two-day intrusion, caused drastic changes in the aerosol size distribution, chemical composition and particle hygroscopicity. Here we show how the intrusion transformed the Arctic from a remote low-particle environment to an area comparable to a central-European urban setting. Additionally, the intrusion resulted in an explosive increase in cloud condensation nuclei, which can have direct effects on Arctic clouds' radiation, their precipitation patterns, and their lifetime. Thus, unless prompt actions to significantly reduce emissions in the source regions are taken, such intrusion events are expected to continue to affect the Arctic climate.
RESUMO
Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and ß-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m-3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.
RESUMO
Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6-C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.
RESUMO
To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles. Toluene-derived (C7) oxidation products have a similar volatility distribution to that of α-pinene-derived (C10) oxidation products, while naphthalene-derived (C10) oxidation products are much less volatile than those from toluene or α-pinene; they are thus stronger contributors to growth. Rapid progression through multiple generations of oxidation is more pronounced in toluene and naphthalene than in α-pinene, resulting in more oxidation but also favoring functional groups with much lower volatility per added oxygen atom, such as hydroxyl and carboxylic groups instead of hydroperoxide groups. Under conditions typical of polluted urban settings, naphthalene may well contribute to nucleation and the growth of the smallest particles, whereas the more abundant alkyl benzenes may overtake naphthalene once the particles have grown beyond the point where the Kelvin effect strongly influences the condensation driving force.