Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Angew Chem Int Ed Engl ; 63(27): e202404972, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651732

RESUMO

Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.


Assuntos
Nanomedicina , Oxazóis , Oxazóis/química , Nanomedicina/métodos , Humanos , SARS-CoV-2 , Polímeros/química , Polímeros/síntese química , Nanopartículas/química , Polimerização , Animais
2.
Genes (Basel) ; 14(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003016

RESUMO

The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of cancers. Since diffuse-type stomach adenocarcinoma, which has epithelial-mesenchymal transition (EMT)-like characteristics, is more malignant than intestinal-type stomach adenocarcinoma, the gene expression and molecular networks in diffuse- and intestinal-type stomach adenocarcinomas were analyzed. Analysis of carboplatin revealed the causal network in diffuse large B-cell lymphoma. The upstream regulators of the molecular networks of cisplatin-treated lung adenocarcinoma included the anti-cancer drug trichostatin A (TSA), a histone deacetylase inhibitor. The upstream regulator analysis of cisplatin revealed an increase in FAS, BTG2, SESN1, and CDKN1A, and the involvement of the tumor microenvironment pathway. The molecular networks were predicted to interact with several microRNAs, which may contribute to the identification of new drug targets for drug-resistant cancer. Analysis of oxaliplatin, a platinum drug, revealed that the SPINK1 pancreatic cancer pathway is inactivated in ischemic cardiomyopathy. The study showed the importance of the molecular networks of anti-cancer drugs and tumor microenvironment in the treatment of cancer resistant to anti-cancer drugs.


Assuntos
Adenocarcinoma , Antineoplásicos , Proteínas Imediatamente Precoces , MicroRNAs , Humanos , Cisplatino , Carboplatina/farmacologia , Platina/farmacologia , Platina/uso terapêutico , Oxaliplatina/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral , Inibidor da Tripsina Pancreática de Kazal , Proteínas Supressoras de Tumor
3.
Biomacromolecules ; 24(12): 5915-5925, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37987713

RESUMO

Aiming toward the development of tailored carrier materials for the cytostatics panobinostat and imatinib, an amphiphilic block copolymer composed of poly(2-ethyl-2-oxazoline) and a degradable poly(2-(3-phenylpropyl)-2-oxazoline) analogue (dPPhPrOx-b-PEtOx) was synthesized via a postpolymerization synthesis route based on reacylation of oxidized linear poly(ethylene imine). The obtained dPPhPrOx-b-PEtOx was found to readily self-assemble into well-defined micelles with a critical micelle concentration of 1 µg mL-1. The incubation of HUVEC cells with the blank micelles revealed their excellent cytocompatibility (up to 2 mg mL-1), thus confirming the polymers' suitability for potential drug delivery application. Subsequently, the encapsulation of the two cytostatics, panobinostat and imatinib, into the dPPhPrOx-b-PEtOx micelles was successfully demonstrated (Dh ≈ 80 nm, PDI ≈ 0.16), whereby the well-defined nature of the micelle was maintained upon extended incubation at 37 °C (36 h) and storage at 4 °C (1 month). Labeling of the micelles with Alexa Fluor 594 and Alexa Fluor 647, which form a Förster resonance energy transfer (FRET) pair, indicated the stability of loaded micelles upon dilution until the CMC. Finally, the cytotoxicity of the loaded micelles was investigated against three different cell lines: Medulloblastoma cell lines ONS-76 and DAOY as well as the glioblastoma cell line U87MG. While the panobinostat-loaded micelles displayed similar cytotoxicity compared to the pure drug in the cell lines, imatinib-loaded micelles were found to be more potent compared to the pristine drug, as significantly higher cytotoxicity was observed across all three cell lines.


Assuntos
Portadores de Fármacos , Micelas , Panobinostat/farmacologia , Mesilato de Imatinib/farmacologia , Portadores de Fármacos/química , Glicina , Polímeros/química , Polietilenoglicóis/química
4.
J Control Release ; 362: 278-296, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640110

RESUMO

Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.


Assuntos
Nanopartículas , Neoplasias , Humanos , Ácido Glutâmico , Adjuvantes Imunológicos/farmacologia , Antígenos , Adjuvantes Farmacêuticos , Ácido Poliglutâmico , Neoplasias/prevenção & controle , Vacinação , Células Dendríticas , Microambiente Tumoral
5.
Biomater Sci ; 11(7): 2336-2347, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36804651

RESUMO

Targeting brain lipid metabolism is a promising strategy to regulate the energy balance and fight metabolic diseases such as obesity. The development of stable platforms for selective delivery of drugs, particularly to the hypothalamus, is a challenge but a possible solution for these metabolic diseases. Attenuating fatty acid oxidation in the hypothalamus via CPT1A inhibition leads to satiety, but this target is difficult to reach in vivo with the current drugs. We propose using an advanced crosslinked polymeric micelle-type nanomedicine that can stably load the CPT1A inhibitor C75-CoA for in vivo control of the energy balance. Central administration of the nanomedicine induced a rapid attenuation of food intake and body weight in mice via regulation of appetite-related neuropeptides and neuronal activation of specific hypothalamic regions driving changes in the liver and adipose tissue. This nanomedicine targeting brain lipid metabolism was successful in the modulation of food intake and peripheral metabolism in mice.


Assuntos
Metabolismo dos Lipídeos , Nanomedicina , Camundongos , Animais , Metabolismo Energético , Obesidade/metabolismo , Hipotálamo/metabolismo
6.
Polymers (Basel) ; 14(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080733

RESUMO

Bioresponsive polymers in nanomedicine have been widely perceived to selectively activate the therapeutic function of nanomedicine at diseased or pathological sites, while sparing their healthy counterparts. This idea can be described as an advanced version of Paul Ehrlich's magic bullet concept. From that perspective, the inherent anomalies or malfunction of the pathological sites are generally targeted to allow the selective activation or sensory function of nanomedicine. Nonetheless, while the primary goals and expectations in developing bioresponsive polymers are to elicit exclusive selectivity of therapeutic action at diseased sites, this remains difficult to achieve in practice. Numerous research efforts have been undertaken, and are ongoing, to tackle this fine-tuning. This review provides a brief introduction to key stimuli with biological relevance commonly featured in the design of bioresponsive polymers, which serves as a platform for critical discussion, and identifies the gap between expectations and current reality.

8.
Adv Drug Deliv Rev ; 182: 114115, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077821

RESUMO

CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Adulto , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/patologia , Criança , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética
9.
Adv Exp Med Biol ; 1393: 141-156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587306

RESUMO

Tumor resistance and recurrence have been associated with the presence of cancer stem cells (CSCs) in tumors. The functions and survival of the CSCs have been associated with several intracellular and extracellular features. Particularly, the abnormal glycosylation of these signaling pathways and markers of CSCs have been correlated with maintaining survival, self-renewal and extravasation properties. Here, we highlight the importance of glycosylation in promoting the stemness character of CSCs and the current strategies for targeting abnormal glycosylation toward generating effective therapies against the CSC population.


Assuntos
Neoplasias , Humanos , Glicosilação , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia
10.
Cancers (Basel) ; 13(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830941

RESUMO

Dynamic regulation in molecular networks including cell cycle regulation and DNA damage response play an important role in cancer. To reveal the feature of cancer malignancy, gene expression and network regulation were profiled in diffuse- and intestinal-type gastric cancer (GC). The results of the network analysis with Ingenuity Pathway Analysis (IPA) showed that the activation states of several canonical pathways related to cell cycle regulation were altered. The G1/S checkpoint regulation pathway was activated in diffuse-type GC compared to intestinal-type GC, while canonical pathways of the cell cycle control of chromosomal replication, and the cyclin and cell cycle regulation, were activated in intestinal-type GC compared to diffuse-type GC. A canonical pathway on the role of BRCA1 in the DNA damage response was activated in intestinal-type GC compared to diffuse-type GC, where gene expression of BRCA1, which is related to G1/S phase transition, was upregulated in intestinal-type GC compared to diffuse-type GC. Several microRNAs (miRNAs), such as mir-10, mir-17, mir-19, mir-194, mir-224, mir-25, mir-34, mir-451 and mir-605, were identified to have direct relationships in the G1/S cell cycle checkpoint regulation pathway. Additionally, cell cycle regulation may be altered in epithelial-mesenchymal transition (EMT) conditions. The alterations in the activation states of the pathways related to cell cycle regulation in diffuse- and intestinal-type GC highlighted the significance of cell cycle regulation in EMT.

11.
Biomater Sci ; 9(21): 7076-7091, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34397074

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A) is a central player in lipid metabolism, catalyzing the first step to fatty acid oxidation (FAO). Inhibiting CPT1A, especially in the brain, can have several pharmacological benefits, such as in treating obesity and brain cancer. C75-CoA is a strong competitive inhibitor of CPT1A. However, due to its negatively charged nature, it has low cellular permeability. Herein, we report the use of poly-ion complex (PIC) micelles to deliver the specific CPT1A inhibitors (±)-, (+)-, and (-)-C75-CoA into U87MG glioma cells and GT1-7 neurons. PIC micelles were formed through charge-neutralization of the cargo with the cationic side chain of PEG-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-PAsp(DET)), forming particles with 55 to 65 nm diameter. Upon short-term incubation with cells, the micelle-encapsulated CPT1A inhibitors resulted in up to 5-fold reduction of ATP synthesis compared to the free drug, without an apparent decline in cell viability. Micelle treatment showed a discernible decrease in 14C-palmitate oxidation into CO2 and acid-soluble metabolites, confirming that the substantial lowering of ATP production has resulted from FAO inhibition. Micelle treatment also diminished IC50 by 2 to 4-fold over the free drug-treated U87MG after long-term incubation. To measure the cellular uptake of these CoA-adduct loaded PIC micelles, we synthesized a fluorescent CoA derivative and prepared Fluor-CoA micelles which showed efficient internalization in the cell lines, both in 2D and 3D culture models, especially in neurons where uptake reached up to 3-fold over the free dye. Our results starkly demonstrate that the PIC micelles are a promising delivery platform for anionic inhibitors of CPT1A in glioma cells and neurons, laying the groundwork for future research or clinical applications.


Assuntos
Metabolismo dos Lipídeos , Micelas , Encéfalo , Coenzima A , Oxirredução , Polietilenoglicóis
12.
ACS Nano ; 15(3): 5545-5559, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33625824

RESUMO

Effective inhibition of the protein derived from cellular myelocytomatosis oncogene (c-Myc) is one of the most sought-after goals in cancer therapy. While several c-Myc inhibitors have demonstrated therapeutic potential, inhibiting c-Myc has proven challenging, since c-Myc is essential for normal tissues and tumors may present heterogeneous c-Myc levels demanding contrasting therapeutic strategies. Herein, we developed tumor-targeted nanomedicines capable of treating both tumors with high and low c-Myc levels by adjusting their ability to spatiotemporally control drug action. These nanomedicines loaded homologues of the bromodomain and extraterminal (BET) motif inhibitor JQ1 as epigenetic c-Myc inhibitors through pH-cleavable bonds engineered for fast or slow drug release at intratumoral pH. In tumors with high c-Myc expression, the fast-releasing (FR) nanomedicines suppressed tumor growth more effectively than the slow-releasing (SR) ones, whereas, in the low c-Myc tumors, the efficacy of the nanomedicines was the opposite. By studying the tumor distribution and intratumoral activation of the nanomedicines, we found that, despite SR nanomedicines achieved higher accumulation than the FR counterparts in both c-Myc high and low tumors, the antitumor activity profiles corresponded with the availability of activated drugs inside the tumors. These results indicate the potential of engineered nanomedicines for c-Myc inhibition and spur the idea of precision pH-sensitive nanomedicine based on cancer biomarker levels.


Assuntos
Antineoplásicos , Azepinas , Antineoplásicos/farmacologia , Azepinas/farmacologia , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Nanomedicina , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Transdução de Sinais , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biomacromolecules ; 22(4): 1458-1471, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33555175

RESUMO

We herein report the fabrication of core-crosslinked, fluorescent, and surface-functionalized worm-like block copolymer micelles as drug delivery vehicles. The polyether-based diblock terpolymer [allyl-poly(ethylene oxide)-block-poly(2-ethylhexyl glycidyl ether-co-furfuryl glycidyl ether)] was synthesized via anionic ring opening polymerization, and self-assembly in water as a selective solvent led to the formation of long filomicelles. Subsequent cross-linking was realized using hydrophobic bismaleimides as well as a designed fluorescent cross-linker for thermally induced Diels-Alder reactions with the furfuryl units incorporated in the hydrophobic block of the diblock terpolymer. As a fluorescent cross-linker, we synthesized and incorporated a cyanine 5-based bismaleimide in the cross-linking process, which can be used for fluorescence tracking of the particles. Furthermore, we covalently attached glucose to the allyl end groups present on the surface of the micelles to investigate active glucose-mediated transport into suitable cell lines. First studies in 2D as well as 3D cell culture models suggest a glucose-dependent uptake of the particles into cells despite their unusually large size compared to other nanoparticle systems used in drug delivery.


Assuntos
Glucose , Micelas , Polietilenoglicóis , Polimerização , Polímeros
14.
Biomaterials ; 267: 120463, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130321

RESUMO

The crucial balance of stability in blood-circulation and tumor-specific delivery has been suggested as one of the challenges for effective bench-to-bedside translation of nanomedicines (NMs). Herein, we developed a supramolecularly enabled tumor-extracellular (Tex) pH-triggered NM that can maintain the micellar structure with the entrapped-drug during systemic circulation and progressively release drug in the tumor by rightly sensing heterogeneous tumor-pH. Desacetylvinblastine hydrazide (DAVBNH), a derivative of potent anticancer drug vinblastine, was conjugated to an aliphatic ketone-functionalized poly(ethylene glycol)-b-poly(amino acid) copolymer and the hydrolytic stability of the derived hydrazone bond was efficiently tailored by exploiting the compartmentalized structure of polymer micelle. We confirmed an effective and safe therapeutic application of Tex pH-sensitive DAVBNH-loaded micelle (Tex-micelle) in orthotopic glioblastoma (GBM) models, extending median survival to 1.4 times in GBM xenograft and 2.6 times in GBM syngeneic model, compared to that of the free DAVBNH. The work presented here offers novel chemical insights into the molecular design of smart NMs correctly sensing Tex-pH via programmed functionalities. The practical engineering strategy based on a clinically relevant NM platform, and the encouraging therapeutic application of Tex-micelle in GBM, one of the most lethal human cancers, thus suggests the potential clinical translation of this system against other types of common cancers, including GBM.


Assuntos
Glioblastoma , Microambiente Tumoral , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Glioblastoma/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Micelas , Nanomedicina , Polietilenoglicóis
15.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353109

RESUMO

Epithelial-mesenchymal transition (EMT) plays an important role in the acquisition of cancer stem cell (CSC) feature and drug resistance, which are the main hallmarks of cancer malignancy. Although previous findings have shown that several signaling pathways are activated in cancer progression, the precise mechanism of signaling pathways in EMT and CSCs are not fully understood. In this study, we focused on the intestinal and diffuse-type gastric cancer (GC) and analyzed the gene expression of public RNAseq data to understand the molecular pathway regulation in different subtypes of gastric cancer. Network pathway analysis was performed by Ingenuity Pathway Analysis (IPA). A total of 2815 probe set IDs were significantly different between intestinal- and diffuse-type GC data in cBioPortal Cancer Genomics. Our analysis uncovered 10 genes including male-specific lethal 3 homolog (Drosophila) pseudogene 1 (MSL3P1), CDC28 protein kinase regulatory subunit 1B (CKS1B), DEAD-box helicase 27 (DDX27), golgi to ER traffic protein 4 (GET4), chromosome segregation 1 like (CSE1L), translocase of outer mitochondrial membrane 34 (TOMM34), YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), ribonucleic acid export 1 (RAE1), par-6 family cell polarity regulator beta (PARD6B), and MRG domain binding protein (MRGBP), which have differences in gene expression between intestinal- and diffuse-type GC. A total of 463 direct relationships with three molecules (MYC, NTRK1, UBE2M) were found in the biomarker-filtered network generated by network pathway analysis. The networks and features in intestinal- and diffuse-type GC have been investigated and profiled in bioinformatics. Our results revealed the signaling pathway networks in intestinal- and diffuse-type GC, bringing new light for the elucidation of drug resistance mechanisms in CSCs.

16.
ACS Nano ; 14(8): 10127-10140, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806051

RESUMO

Glioblastoma (GBM) is resistant to immune checkpoint inhibition due to its low mutation rate, phosphatase and tensin homologue (PTEN)-deficient immunosuppressive microenvironment, and high fraction of cancer stem-like cells (CSCs). Nanomedicines fostering immunoactivating intratumoral signals could reverse GBM resistance to immune checkpoint inhibitors (ICIs) for promoting curative responses. Here, we applied pH-sensitive epirubicin-loaded micellar nanomedicines, which are under clinical evaluation, to synergize the efficacy of anti-PD1antibodies (aPD1) against PTEN-positive and PTEN-negative orthotopic GBM, the latter with a large subpopulation of CSCs. The combination of epirubicin-loaded micelles (Epi/m) with aPD1 overcame GBM resistance to ICIs by transforming cold GBM into hot tumors with high infiltration of antitumor immune cells through the induction of immunogenic cell death (ICD), elimination of immunosuppressive myeloid-derived suppressor cells (MSDCs), and reduction of PD-L1 expression on tumor cells. Thus, Epi/m plus aPD1 eradicated both PTEN-positive and PTEN-negative orthotopic GBM and provided long-term immune memory effects. Our results indicate the high translatable potential of Epi/m plus aPD1 for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Epirubicina , Glioblastoma/tratamento farmacológico , Humanos , Micelas , Nanomedicina , Células-Tronco Neoplásicas , PTEN Fosfo-Hidrolase , Microambiente Tumoral
17.
Front Pharmacol ; 11: 904, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625096

RESUMO

The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.

18.
Nanomedicine (Lond) ; 15(16): 1617-1636, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32618490

RESUMO

Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations. Although many previous reviews are focused on brain targeting with nanomedicines in general, none of those are concerned explicitly on the neurons, while targeting neuronal cells in central nervous diseases is now one of the biggest challenges in nanomedicine and neuroscience. We review the most relevant advances in nanomedicine design and strategies for neuronal drug delivery that might successfully bridge the gap between laboratory and bedside treatment in neurology.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Nanomedicina , Neurônios
19.
ACS Nano ; 14(6): 6729-6742, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32431145

RESUMO

Delivering therapeutic antibodies into the brain across the blood-brain barrier at a therapeutic level is a promising while challenging approach in the treatment of neurological disorders. Here, we present a polymeric nanomicelle (PM) system capable of delivering therapeutically effective levels of 3D6 antibody fragments (3D6-Fab) into the brain parenchyma for inhibiting Aß aggregation. PM assembly was achieved by charge-converting 3D6-Fab through pH-sensitive citraconylation to allow complexation with reductive-sensitive cationic polymers. Brain targeting was achieved by functionalizing the PM surface with glucose molecules to allow interaction with recycling glucose transporter (Glut)-1 proteins. Consequently, 41-fold enhanced 3D6-Fab accumulation in the brain was achieved by using the PM system compared to free 3D6-Fab. Furthermore, therapeutic benefits were obtained by successfully inhibiting Aß1-42 aggregation in Alzheimer's disease mice systemically treated with 3D6-Fab-loaded glucosylated PM. Hence, this nanocarrier system represents a promising method for effectively delivering functional antibody agents into the brain and treating neurological diseases.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Camundongos , Camundongos Transgênicos
20.
Mol Pharm ; 17(6): 1835-1847, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315193

RESUMO

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with the potential to cross the blood-brain barrier; however, the concentrations necessary for a cytotoxic effect against cancer cells exceed the concentrations achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines. In addition, activity against tumor spheroids formed from mouse glioma and mouse cancer stem cells, respectively, was evaluated. Our results show good activity of atorvastatin against all tested cell lines. Interestingly, in the three-dimensional (3D) models, growth inhibition was more pronounced for the micellar formulation compared to free atorvastatin. Finally, atorvastatin penetration across a blood-brain barrier model obtained from human induced-pluripotent stem cells was evaluated. Our results suggest that the presented micelles may enable much higher serum concentrations than possible by oral administration; however, if transport across the blood-brain barrier is sufficient to reach the therapeutic atorvastatin concentration for the treatment of glioblastoma via intravenous administration remains unclear.


Assuntos
Antineoplásicos/farmacologia , Atorvastatina/química , Atorvastatina/farmacologia , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Barreira Hematoencefálica , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Difusão Dinâmica da Luz , Glioblastoma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Micelas , Nanomedicina/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA