Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Biosci ; 7: 572934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251246

RESUMO

Sequence alignment is a critical step in many critical genomic studies, such as variant calling, quantitative transcriptome analysis (RNA-seq), and metagenomic sequence classification. However, the alignment performance is largely affected by repetitive sequences in the reference genome, which extensively exist in species from bacteria to mammals. Aligning repeating sequences might lead to tremendous candidate locations, bringing about a challenging computational burden. Thus, most alignment tools prefer to simply discard highly repetitive seeds, but this may cause the true alignment to be missed. Using maximal approximate matches (MAMs) as seeds is an option, but MEMs seeds may fail due to sequencing errors or genomic variations in MEMs seeds. Here, we propose a novel sequence alignment algorithm, named MAM, which can efficiently align short DNA sequences. MAM first builds a modified Burrows-Wheeler transform (BWT) structure of a reference genome to accelerate approximate seed matching. Then, MAM uses maximal approximate matches (MAMs) seeds to reduce the candidate locations. Finally, MAM applies an affine-gap-penalty dynamic programming to extend MAMs seeds. Experimental results on simulated and real sequencing datasets show that MAM achieves better performance in speed than other state-of-the-art alignment tools. The source code is available at https://github.com/weiquan/mam.

2.
BMC Bioinformatics ; 16: 386, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26573684

RESUMO

BACKGROUND: Because of the short read length of high throughput sequencing data, assembly errors are introduced in genome assembly, which may have adverse impact to the downstream data analysis. Several tools have been developed to eliminate these errors by either 1) comparing the assembled sequences with some similar reference genome, or 2) analyzing paired-end reads aligned to the assembled sequences and determining inconsistent features alone mis-assembled sequences. However, the former approach cannot distinguish real structural variations between the target genome and the reference genome while the latter approach could have many false positive detections (correctly assembled sequence being considered as mis-assembled sequence). RESULTS: We present misFinder, a tool that aims to identify the assembly errors with high accuracy in an unbiased way and correct these errors at their mis-assembled positions to improve the assembly accuracy for downstream analysis. It combines the information of reference (or close related reference) genome and aligned paired-end reads to the assembled sequence. Assembly errors and correct assemblies corresponding to structural variations can be detected by comparing the genome reference and assembled sequence. Different types of assembly errors can then be distinguished from the mis-assembled sequence by analyzing the aligned paired-end reads using multiple features derived from coverage and consistence of insert distance to obtain high confident error calls. CONCLUSIONS: We tested the performance of misFinder on both simulated and real paired-end reads data, and misFinder gave accurate error calls with only very few miscalls. And, we further compared misFinder with QUAST and REAPR. misFinder outperformed QUAST and REAPR by 1) identified more true positive mis-assemblies with very few false positives and false negatives, and 2) distinguished the correct assemblies corresponding to structural variations from mis-assembled sequence. misFinder can be freely downloaded from https://github.com/hitbio/misFinder.


Assuntos
Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Schizosaccharomyces/genética , Análise de Sequência de DNA/métodos , Software , Simulação por Computador
3.
BMC Genomics ; 16 Suppl 3: S7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25708162

RESUMO

BACKGROUND: Despite the large volume of genome sequencing data produced by next-generation sequencing technologies and the highly sophisticated software dedicated to handling these types of data, gaps are commonly found in draft genome assemblies. The existence of gaps compromises our ability to take full advantage of the genome data. This study aims to identify a practical approach for biologists to complete their own genome assemblies using commonly available tools and resources. RESULTS: A pipeline was developed to assemble complete genomes primarily from the next generation sequencing (NGS) data. The input of the pipeline is paired-end Illumina sequence reads, and the output is a high quality complete genome sequence. The pipeline alternates the employment of computational and biological methods in seven steps. It combines the strengths of de novo assembly, reference-based assembly, customized programming, public databases utilization, and wet lab experimentation. The application of the pipeline is demonstrated by the completion of a bacterial genome, Thermotoga sp. strain RQ7, a hydrogen-producing strain. CONCLUSIONS: The developed pipeline provides an example of effective integration of computational and biological principles. It highlights the complementary roles that in silico and wet lab methodologies play in bioinformatical studies. The constituting principles and methods are applicable to similar studies on both prokaryotic and eukaryotic genomes.


Assuntos
Genoma Bacteriano , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Software , Simulação por Computador , Thermotoga maritima/genética , Thermotoga neapolitana/genética
4.
PLoS One ; 9(12): e114253, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25461763

RESUMO

Since the read lengths of high throughput sequencing (HTS) technologies are short, de novo assembly which plays significant roles in many applications remains a great challenge. Most of the state-of-the-art approaches base on de Bruijn graph strategy and overlap-layout strategy. However, these approaches which depend on k-mers or read overlaps do not fully utilize information of paired-end and single-end reads when resolving branches. Since they treat all single-end reads with overlapped length larger than a fix threshold equally, they fail to use the more confident long overlapped reads for assembling and mix up with the relative short overlapped reads. Moreover, these approaches have not been special designed for handling tandem repeats (repeats occur adjacently in the genome) and they usually break down the contigs near the tandem repeats. We present PERGA (Paired-End Reads Guided Assembler), a novel sequence-reads-guided de novo assembly approach, which adopts greedy-like prediction strategy for assembling reads to contigs and scaffolds using paired-end reads and different read overlap size ranging from Omax to Omin to resolve the gaps and branches. By constructing a decision model using machine learning approach based on branch features, PERGA can determine the correct extension in 99.7% of cases. When the correct extension cannot be determined, PERGA will try to extend the contig by all feasible extensions and determine the correct extension by using look-ahead approach. Many difficult-resolved branches are due to tandem repeats which are close in the genome. PERGA detects such different copies of the repeats to resolve the branches to make the extension much longer and more accurate. We evaluated PERGA on both Illumina real and simulated datasets ranging from small bacterial genomes to large human chromosome, and it constructed longer and more accurate contigs and scaffolds than other state-of-the-art assemblers. PERGA can be freely downloaded at https://github.com/hitbio/PERGA.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Máquina de Vetores de Suporte , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA