Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(37): 22661-22669, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106482

RESUMO

Zn-doped Cu(111) alloy (Cu3Zn(111)) and Cu(111) surfaces were built using density functional theory (DFT) calculations to investigate the role of the Zn promoter in the methyl formate (MF) synthesis by the direct dehydrogenation of methanol. The rate determining step (RDS) of the MF synthesis is the dehydrogenation of CH3O to CH2O on both the Cu3Zn(111) alloy and the Cu(111) surfaces. Nevertheless, the energy barrier of the RDS is 119.4 kJ mol-1 on the Cu3Zn(111) alloy surface, lower than that on the Cu(111) surface. Compared with the favorable CH3O-CH2O coupling on the Cu(111) surface, the CH3O-CHO coupling is kinetically favorable on the Cu3Zn(111) alloy surface. Moreover, the formation of the by-product CO is effectively suppressed over the Cu3Zn(111) alloy surface. In addition, the results of the d-band center show that the addition of the Zn promoter increases the electron density of copper atoms, which accounts for the reduction in the energy barrier for the CH2O formation and inhibition of the CO formation.

2.
ACS Appl Mater Interfaces ; 13(48): 58085-58095, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34826222

RESUMO

Many researchers have contributed to the assembly of zeolitic nanosheets and nanocrystallites into three-dimensional (3D) networks as it can remarkably improve the catalytic and/or adsorptive performances of zeolites. However, the applications of these synthesized materials are seriously limited because of low hydrothermal stability. A highly interesting strategy, but a great challenge, is the alignment of well-crystallized zeolite crystals into desirable architectures. Here, well-crystallized silicalite-1 crystals are assembled like toy Lego bricks into one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) architectures, and the assembly mechanism is investigated by combining elaborate experiments, in situ spectroscopy, and theoretical calculations. A 1D architecture was formed by stacking crystals along the b axis with the assistance of ethanol that is selectively adsorbed on (100) and (001) crystal facets. Such adsorption increases the condensation energy barriers along a and c axes, but facilitates the condensation between (010) facets. The assembly of the crystals into well-arrayed 2D architectures is achieved using both ethanol and benzaldehyde because of their preferable adsorption on the (001) facet. When an amphiphilic copolymer (P123) was further added in the gel along with the substitution of ethanol by 1-propanol, a 3D network was fabricated by the agglomeration and self-pillaring of the 2D Lego bricks possibly with P123 aggregates as the substrate matrix. Excitingly, upon alignment of crystals into 2D architectures, the adsorptive selectivity of 1-butanol (2 wt %) to water of silicalite-1 increases by 45.3 times, while into 3D networks, the catalytic activity for the Beckmann rearrangement of cyclohexanone oxime elevates by 79% along with a great enhancement of catalytic stability.

3.
Environ Sci Pollut Res Int ; 28(28): 37592-37602, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33715125

RESUMO

Co3O4 nanorods with diameters of ~0.15 µm and lengths of ~1 µm were prepared using a hydrothermal method via the assembly of microcrystals and tested in the catalytic oxidation of toluene. The catalytic performance of Co3O4 nanorods was improved by the addition of Ag at various concentrations, and the 7% Ag/Co3O4 catalyst achieves a toluene conversion of 90% at 256 °C with a space velocity of 78,000 mL g-1 h-1, which is much lower than that of the pristine Co3O4 (269 °C). The addition of Ag promoted the activation of the surface oxygen species and the formation of more oxygen vacancies, improving the relative low-temperature reducibility of Co3O4, which is favorable for toluene oxidation. Moreover, the 7% Ag/Co3O4 catalyst showed an excellent stability for toluene oxidation at 250 and 260 °C for 50 h under the same conditions.


Assuntos
Nanotubos , Prata , Catálise , Óxidos , Tolueno
4.
ACS Appl Mater Interfaces ; 12(27): 30483-30493, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32538075

RESUMO

Exfoliation of graphene oxide (GO) via thermal expansion is regarded as the most promising approach to obtain few-layer graphene (FLG) in bulk. Herein, we introduce an efficient strategy for improving the exfoliation process by adding a tiny amount of lithium nitrate in the precursors, which significantly enhances the removal of oxygen-containing functional groups and produces 1-2 layer graphene. FLG-supported highly dispersed Cu nanoparticles (NPs, ≈4.2 nm) can be further synthesized through exfoliating the mixture of GO, lithium nitrate, and copper(II) nitrate, which displayed superior catalytic activity and stability in the synthesis of dimethyl carbonate (DMC) using liquid methanol oxidative carbonylation. The characterization results demonstrate that during the thermal expansion process, lithium nitrate was decomposed to Li2O and immediately reacted with CO2 released by the decomposition of GO to form stable Li2CO3, which promotes efficient charge transfer and produces Cuδ+ (0 < δ < 1) species in the Cu/Li-PGO catalyst. Density functional theory calculations prove that the presence of Cuδ+ markedly facilitates CO adsorption over the resulting catalyst and causes a decrease of the energy barrier of the rate-limiting step for DMC formation (CO insertion). These findings give a theoretical explanation of the enhanced catalytic performance of the Cu/Li-PGO catalyst. The present work provides a simple and practical avenue to the exfoliation of graphene and the dispersions of metal NPs on graphene sheets.

5.
ACS Appl Mater Interfaces ; 9(17): 14899-14910, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402649

RESUMO

Chainlike zeolites are advantageous to various applications as a catalyst or an adsorbent with specific selectivity; however, it is often very difficult to get desired morphology due to the complexity of zeolite synthesis process. In this work, appropriate parameters for the synthesis of perfect chainlike ZSM-5 zeolites were well determined, which illustrates that the chain length can be controlled by the composition of synthesis mixture, the amount of residual alcohol in the synthesis system, and the crystallization time. Moreover, the mechanism of chainlike crystal growth was investigated by analyzing the surface species during the synthesis process, with the help of density functional theory (DFT) calculation. The results indicate that the formation of disk crystals with proper dimension and flat surface having abundant hydroxyl groups is crucial to the growth of chainlike ZSM-5 crystals; the condensation of Si-OH groups on the (010) facet is energetically more favorable than that on other facets, leading to the growth of MFI crystals along the b-orientation. Through finely tuning the multifarious synthesis parameters, chainlike ZSM-5 zeolites with controllable length in b-orientation are obtained without using any other extra organic additives except the necessary template agent such as tetrapropylammonium hydroxide (TPAOH). Owing to the increased tortuosity of pore channels in the chainlike ZSM-5, the difference between p-xylene and o/m-xylenes in their adsorption behavior and diffusivity is greatly enhanced. These results help to clarify the formation mechanism of zeolites with chainlike morphology and then bring forward an effective approach to get zeolite materials with specific properties in adsorption and catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA