Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 87(4): 047601, 2001 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-11461645

RESUMO

We have observed coherent nuclear resonant scattering of synchrotron radiation at the 22.5-keV resonance of (149)Sm. High-speed rotational sample motion led to an angular deflection of the resonantly scattered radiation off the nonresonant primary beam. This allowed us to determine the resonance energy of the first excited nuclear level of (149)Sm to be 22496(4) eV. Because of the angular deflection of the resonant photons, time spectra of coherent nuclear resonant scattering can be recorded as a function of a spatial coordinate. Time resolutions of a few 10 ps can be expected, which are beyond the limits of existing x-ray detection schemes.

2.
Phys Rev Lett ; 84(5): 1007-10, 2000 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11017427

RESUMO

A coherently excited nuclear state in a rotating sample acquires a phase shift during its time evolution that is proportional to its angular momentum and the rotation angle. As a consequence, the radiative decay of the excited state proceeds into the rotated direction, and the time spectrum of the nuclear decay is mapped onto an angular scale. This effect has been observed in nuclear resonant scattering of synchrotron radiation from a 57Fe metal foil rotating at 18 kHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA