Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2311075121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625942

RESUMO

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of Na3V2(PO4)3 (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the Na3V2(PO4)3 (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

2.
Adv Mater ; 35(52): e2307592, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949102

RESUMO

Battery performance at subzero is restricted by sluggish interfacial kinetics. To resolve this issue, potassium-based dual-ion batteries (K-DIBs) based on the polytriphenylamine (PTPAn) cathode with anion storage chemistry and the hydrogen titanate (HTO) anode with K+ /solvent co-intercalation mechanism are constructed. Both the PTPAn cathode and the HTO anode do not undergo the desolvation process, which can effectively accelerate the interfacial kinetics at subzero. As revealed by theoretical calculations and experimental analysis, the strong K+ /solvent binding energy in the dilute electrolyte, the charge shielding effect of the crystal water, and the uniform SEI layer with high content of the flexible organic species synergically promote HTO to undergo K+ /solvent co-intercalation behavior. The special co-intercalation mechanism and anion storage chemistry enable HTO||PTPAn K-DIBs with superior rate performance and cycle durability, maintaining a capacity retention of 94.1% after 6000 cycles at -40 °C and 91% after 1000 cycles at -60 °C. These results provide a step forward for achieving high-performance energy storage devices at low temperatures.

3.
Angew Chem Int Ed Engl ; 61(48): e202213416, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36198654

RESUMO

Constructing stable electrode/electrolyte interphase with fast interfacial kinetics is vital for fast-charging batteries. Herein, we investigate the interphase that forms between a high-voltage Na3 V2 (PO4 )2 F3 cathode and the electrolytes consisting of 3.0, 1.0, or 0.3 M NaClO4 in an organic carbonate solvent (47.5 : 47.5 : 5 mixture of EC: PC: FEC) during charging up to 4.5 V at 55 °C. It is found that a higher anion/solvent ratio in electrolyte solvation structure induces anion-dominated interphase containing more inorganic species and more anion derivatives (Cx ClOy ), which leads to a larger interfacial Na+ transport resistance and more unfavorable gas evolution. In comparison, a low anion/solvent ratio derives stable anion-tuned interphase that enables better interfacial kinetics and cycle ability. Importantly, the performance of a failed cathode is restored by triggering the decomposition of Cx ClOy species. This work elucidates the role of tuning interphase in fast-charging batteries.

4.
Nanomicro Lett ; 14(1): 143, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809176

RESUMO

Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature (low-T). However, sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T. Herein, we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti3C2 MXene (Ti3C2-Nfunct) to address these issues. The introduction of nitrogen terminals endows Ti3C2-Nfunct with large interlayer space and charge redistribution, improved conductivity and sufficient adsorption sites for Na+, which improves the possibility of Ti3C2 for accommodating more Na atoms, further enhancing the Na+ storage capability of Ti3C2. As revealed, Ti3C2-Nfunct not only possesses a lower Na-ion diffusion energy barrier and charge transfer activation energy, but also exhibits Na+-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T. Besides, the solid electrolyte interface dominated by inorganic compounds is more beneficial for the Na+ transfer at the electrode/electrolyte interface. Compared with of the unmodified sample, Ti3C2-Nfunct exhibits a twofold capacity (201 mAh g-1), fast-charging ability (18 min at 80% capacity retention), and great superiority in cycle life (80.9%@5000 cycles) at - 25 °C. When coupling with Na3V2(PO4)2F3 cathode, the Ti3C2-Nfunct//NVPF exhibits high energy density and cycle stability at - 25 °C.

5.
ACS Nano ; 14(10): 13765-13774, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33025784

RESUMO

Sluggish kinetics and limited reversible capacity present two major challenges for layered titanates to achieve satisfactory sodium-ion storage performance at subzero-temperatures (subzero-T). To facilitate sodiation dynamics and improve reversible capacity, we proposed an additive-free anode with Sn(II) located between layers. Sn-5s in interlayer-confining Sn(II), which has a larger negative charge, will hybridize with O-2p to trigger charge redistribution, thereby enhancing electronic conductivity. H-titanates with an open framework are designed to stabilize Sn(II) and restrain subsequent volume expansion, which could potentially surpass the capacity limitation of titanate-based materials via a joint alloying-intercalation reaction with high reversibility. Moreover, the generation of conductive Na14Sn4 and the expansion of interlayer spacing resulting from the interlayered alloying reaction are beneficial for charge transfer. These effects synergistically endow the modified sample with a considerably lower activation energy and a 3-fold increase in diffusion. Consequently, the designed anode delivers excellent subzero-T adaptability when compared to the unmodified sample, maintaining capacity retention of 91% after 1200 cycles at -20 °C and 90% after 850 cycles at -30 °C.

6.
Small ; 14(17): e1704508, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29611299

RESUMO

It is challenging for flexible solid-state hybrid capacitors to achieve high-energy-high-power densities in both Li-ion and Na-ion systems, and the kinetics discrepancy between the sluggish faradaic anode and the rapid capacitive cathode is the most critical issue needs to be addressed. To improve Li-ion/Na-ion diffusion kinetics, flexible oxygen-deficient TiO2-x /CNT composite film with ultrafast electron/ion transport network is constructed as self-supported and light-weight anode for a quasi-solid-state hybrid capacitor. It is found that the designed porous yolk-shell structure endows large surface area and provides short diffusion length, the oxygen-deficient composite film can improve electrical conductivity, and enhance ion diffusion kinetic by introducing intercalation pseudocapacitance, therefore resulting in advance electrochemical properties. It exhibits high capacity, excellent rate performance, and long cycle life when utilized as self-supported anodes for Li-ion and Na-ion batteries. When assembled with activated carbon/carbon nanotube (AC/CNT) flexible cathode, using ion conducting gel polymer as the electrolyte, high energy densities of 104 and 109 Wh kg-1 are achieved at 250 W kg-1 in quasi-solid-state Li-ion and Na-ion capacitors (LICs and SICs), respectively. Still, energy densities of 32 and 36 Wh kg-1 can be maintained at high power densities of 5000 W kg-1 in LICs and SICs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA