RESUMO
Extra virgin olive oil (EVOO) is a basic food of the Mediterranean diet and an important source of bioactive compounds, especially phenolic substances. The culinary techniques to which the oil is subjected before consumption cause the migration of these compounds, hence the importance of studying their stability before and after culinary treatment. We determined the behaviour of the phenols present in EVOO and its total antioxidant capacity before and after the use of various culinary techniques such as deep frying, boiling (in a water/oil mixture (W/O) and sauteing, observing that the study parameters varied according to the variety of oil and the culinary technique used. Significant statistical differences were observed between the different varieties of EVOO according to the culinary technique used. But this was not the case with respect to polyphenol content, for which no statistically significant differences were observed among the different varieties of EVOO according to the culinary techniques employed (p > 0.05), except with the Arbequina variety (p < 0.05). With respect to the individual polyphenols - tyrosol, p-vainillin, vanillic acid, gallic acid, trans-caffeic acid, ferulic acid and luteolin - our analysis shows that although there were differences in content between raw EVOO and EVOO treated with each of the culinary techniques, these differences were not statistically significant (p > 0.05). There were significant losses of oleocanthal with the W/O boiling technique, but content increases were observed following sauteing and deep frying with respect to raw EVOO. Total antioxidant capacity presented a similar pattern in all samples, with increases after sauteing and decreases after W/O boiling and deep frying. ABTS was the most suitable technique for determining antioxidant capacity in EVOO. In short, the behaviour of the bioactive compounds in EVOO depends on the temperature and the cooking medium used.
Assuntos
Antioxidantes , Dieta Mediterrânea , Azeite de Oliva , Culinária , Alimentos , PolifenóisRESUMO
There are a plethora of plant species in India, which have been widely used in vegetable dishes, soups, desserts and herbal medicine. In addition to these traditional uses, today there is the extra possibility of also being able to use these plants in the nutritional supplements industry due to their favorable antioxidant and mineral composition. In this sense, thirteen vegetable species-Chanania lanzan, Ziziphus mauritiana, Nilumbo nucifera, Terminalia catappa, Terminalia arjuna, Terminalia bellirica, Terminalia chebula, Lagenaria siceraria, Luffa aegyptiaca, Praecitrullus fistulosus, Benincasa hispida, Citrullus lanatus var. lanatus and Cucurbita maxima-have been analyzed. In this paper we discuss the distribution of polyphenols and minerals (Na, K, Mg, Ca, Al, P, S, Cr, Mn, Fe, Cu, Zn, Mo, As and Pb) in different seed parts (the rhizome, pericarp, carpel, seed coat and kernel) of the above species and their possible use in the nutritional supplements industry. The concentrations of total polyphenols, flavonoids and minerals ranged from 407 to 3144 mg rutin hydrate/100 g, 24 to 3070 mg quercetin/100 g and 1433 to 7928 mg/100 g, respectively. K, Ca, P and S were abundant in these herbal fruits. In two species of herbal fruits, Terminalia arjuna and Terminalia chebula, only part of the seed structure was suitable for use in nutritional supplements.
Assuntos
Cucurbita , Cucurbitaceae , Terminalia , Polifenóis/análise , Frutas/química , Extratos Vegetais/química , Minerais/análise , Antioxidantes/análise , Cucurbita/química , Terminalia/químicaRESUMO
Avocado virgin oil (AVO) was used during eggplant deep-frying, boil, and boil in a water-oil mixture (W/O). There were measured the contents of moisture, dry matter, fat, total (TPC) and ten individual phenols, antioxidant activity (ABTS and DPPH), and total sterols; as well as the profiles of eight fatty acids and fourteen sterols/stanols. The values of raw and processed foods were compared and studied with multivariate analysis. The antioxidant capacity of AVO lowered after deep frying but augmented in eggplant and water after all treatments. The TPC was steady in AVO and raised in fried eggplant. Thermal treatments added to the initial profiles of the AVO, eggplant and water, nine, eight, and four phenols, respectively. Percentages of the main fatty acids (oleic, palmitic and linoleic), and sterols (ß-sitosterol, campesterol, and Δ5-avenasterol), remained unchanged between the raw and treated AVO; and the lipidic fractions from processed eggplant. Cooking leads to the movement of hydrophilic and lipophilic functional compounds between AVO, eggplant and water. Migration of sterols and unsaturated fatty acids from AVO to eggplant during deep frying and W/O boiling improved the functional properties of eggplant by adding the high biological value lipophilic fraction to the naturally occurring polyphenols.
RESUMO
This study aimed to analyse the association between socioeconomic status (SES) and fatness and fitness in preschoolers. 2,638 preschoolers (3-5 years old; 47.2% girls) participated. SES was estimated from the parental educational and occupational levels, and the marital status. Fatness was assessed by body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR). Physical fitness components were assessed using the PREFIT battery. Preschoolers whose parents had higher educational levels had lower fatness (P < 0.05). BMI significantly differed across occupational levels of each parent (P < 0.05) and WHtR across paternal levels (P = 0.004). Musculoskeletal fitness was different across any SES factor (P < 0.05), except handgrip across paternal occupational levels (P ≥ 0.05). Preschoolers with high paternal occupation had higher speed/agility (P = 0.005), and those with high or low maternal education had higher VO2max (P = 0.046). Odds of being obese and having low musculoskeletal fitness was lower as SES was higher (P < 0.05). Those with married parents had higher cardiorespiratory fitness than single-parent ones (P = 0.010). School-based interventions should be aware of that children with low SES are at a higher risk of obesity and low fitness already in the first years of life.