Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(6): 1174-1182, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35029257

RESUMO

There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While theoretical and numerical models of such systems are now abundant, no real-life examples have been shown to date. We present an experimental investigation of the collective motion of the nematode Turbatrix aceti that self-propel by body undulation. We discover that these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves, which produces strong fluid flows. We uncover that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. We illustrate this by showing that the force generated by this state is sufficient to change the physics of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength. The relatively large size and ease of culture make Turbatrix aceti a promising model organism for experimental investigation of swarming and oscillating active matter capable of producing controllable work.


Assuntos
Nematoides , Rhabditoidea , Animais , Movimento
2.
Icarus ; 3512020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33087944

RESUMO

Spin off events and impacts can eject boulders from an asteroid surface and rubble pile asteroids can accumulate from debris following a collision between large asteroids. These processes produce a population of gravitational bound objects in orbit that can impact an asteroid surface at low velocity and with a distribution of impact angles. We present laboratory experiments of low velocity spherical projectiles into a fine granular medium, sand. We delineate velocity and impact angles giving ricochets, those giving projectiles that roll-out from the impact crater and those that stop within their impact crater. With high speed camera images and fluorescent markers on the projectiles we track spin and projectile trajectories during impact. We find that the projectile only reaches a rolling without slipping condition well after the marble has reached peak penetration depth. The required friction coefficient during the penetration phase of impact is 4-5 times lower than that of the sand suggesting that the sand is fluidized near the projectile surface during penetration. We find that the critical grazing impact critical angle dividing ricochets from roll-outs, increases with increasing impact velocity. The critical angles for ricochet and for roll-out as a function of velocity can be matched by an empirical model during the rebound phase that balances a lift force against gravity. We estimate constraints on projectile radius, velocity and impact angle that would allow projectiles on asteroids to ricochet or roll away from impact, finally coming to rest distant from their initial impact sites.

3.
Icarus ; 3402020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32943796

RESUMO

Mass-spring model simulations are used to investigate past spin states of a viscoelastic Phobos and Deimos. From an initially tidally locked state, we find crossing of a spin-orbit resonance with Mars or a mean motion resonance with each other does not excite tumbling in Phobos or Deimos. However, once tumbling our simulations show that these moons can remain so for an extended period and during this time their orbital eccentricity can be substantially reduced. We attribute the tendency for simulations of an initially tumbling viscoelastic body to drop into spin-synchronous state at very low eccentricity to the insensitivity of the tumbling chaotic zone volume to eccentricity. After a tumbling body enters the spin synchronous resonance, it can exhibit long lived non-principal axis rotation and this too can prolong the period of time with enhanced tidally generated energy dissipation. The low orbital eccentricities of Phobos and Deimos could in part be due to spin excitation by nearly catastrophic impacts rather than tidal evolution following orbital resonance excitation.

4.
Icarus ; 319: 312-333, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32908320

RESUMO

We consider an impact on an asteroid that is energetic enough to cause resurfacing by seismic reverberation and just below the catastrophic disruption threshold, assuming that seismic waves are not rapidly attenuated. In asteroids with diameter less than 1 km we identify a regime where rare energetic impactors can excite seismic waves with frequencies near those of the asteroid's slowest normal modes. In this regime, the distribution of seismic reverberation is not evenly distributed across the body surface. With mass-spring model elastic simulations, we model impact excitation of seismic waves with a force pulse exerted on the surface and using three different asteroid shape models. The simulations exhibit antipodal focusing and normal mode excitation. If the impulse excited vibrational energy is long lasting, vibrations are highest at impact point, its antipode and at high surface elevations such as an equatorial ridge. A near equatorial impact launches a seismic impulse on a non-spherical body that can be focused on two additional points on an the equatorial ridge. We explore simple flow models for the morphology of vibration induced surface slumping. We find that the initial seismic pulse is unlikely to cause large shape changes. Long lasting seismic reverberation on Bennu caused by a near equatorial impact could have raised the height of its equatorial ridge by a few meters and raised two peaks on it, one near impact site and the other near its antipode.

5.
Mon Not R Astron Soc ; 485(1): 725-738, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32921836

RESUMO

Using a damped mass-spring model, we simulate wobble of spinning homogeneous viscoelastic ellipsoids undergoing non-principal axis rotation. Energy damping rates are measured for oblate and prolate bodies with different spin rates, spin states, viscoelastic relaxation timescales, axis ratios, and strengths. Analytical models using a quality factor by Breiter et al. (2012) and for the Maxwell rheology by Frouard & Efroimsky (2018) match our numerical measurements of the energy dissipation rate after we modify their predictions for the numerically simulated Kelvin-Voigt rheology. Simulations of nearly spherical but wobbling bodies with hard and soft cores show that the energy dissipation rate is more sensitive to the material properties in the core than near the surface.

6.
Icarus ; 329: 182-196, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32934397

RESUMO

Using viscoelastic mass spring model simulations to track heat distribution inside a tidally perturbed body, we measure the near/far side asymmetry of heating in the crust of a spin synchronous Moon in eccentric orbit about the Earth. With the young Moon within. 8 Earth radii of the Earth, we find that tidal heating per unit area in a lunar crustal shell is asymmetric due to the octupole order moment in the Earth's tidal field and is 10 to 20% higher on its near side than on its far side. Tidal heating reduces the crustal basal heat flux and the rate of magma ocean crystallization. Assuming that the local crustal growth rate depends on the local basal heat flux and the distribution of tidal heating in latitude and longitude, a heat conductivity model illustrates that a moderately asymmetric and growing lunar crust could maintain its near/far side thickness asymmetry but only while the Moon is near the Earth.

7.
Celest Mech Dyn Astron ; 130(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32924029

RESUMO

A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet-planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet's obliquity to near 90 or 180 degrees depending upon whether the spin resonance is first or zero-th order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus's high obliquity. However we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus's high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.

8.
Nature ; 534(7606): 218-21, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279215

RESUMO

Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA