Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Oncol ; 17(9): 1763-1783, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37057706

RESUMO

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. The standard treatment achieves a median overall survival for GBM patients of only 15 months. Hence, novel therapies based on an increased understanding of the mechanistic underpinnings of GBM are desperately needed. In this study, we show that elevated expression of 28S rRNA (cytosine-C(5))-methyltransferase NSUN5, which methylates cytosine 3782 of 28S rRNA in GBM cells, is strongly associated with the poor survival of GBM patients. Moreover, we demonstrate that overexpression of NSUN5 increases protein synthesis in GBM cells. NSUN5 knockdown decreased protein synthesis, cell proliferation, sphere formation, migration, and resistance to temozolomide in GBM cell lines. NSUN5 knockdown also decreased the number and size of GBM neurospheres in vitro. As a corollary, mice harboring U251 tumors wherein NSUN5 was knocked down survived longer than mice harboring control tumors. Taken together, our results suggest that NSUN5 plays a protumorigenic role in GBM by enabling the enhanced protein synthesis requisite for tumor progression. Accordingly, NSUN5 may be a hitherto unappreciated target for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA , RNA Ribossômico 28S , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Humanos
2.
J Cell Sci ; 132(4)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29507113

RESUMO

We previously proposed a novel mechanism by which the enzyme Golgi-specific Brefeldin A resistance factor 1 (GBF1) is recruited to the membranes of the cis-Golgi, based on in vivo experiments. Here, we extended our in vivo analysis on the production of regulatory Arf-GDP and observed that ArfGAP2 and ArfGAP3 do not play a role in GBF1 recruitment. We confirm that Arf-GDP localization is critical, as a TGN-localized Arf-GDP mutant protein fails to promote GBF1 recruitment. We also reported the establishment of an in vitro GBF1 recruitment assay that supports the regulation of GBF1 recruitment by Arf-GDP. This in vitro assay yielded further evidence for the requirement of a Golgi-localized protein because heat denaturation or protease treatment of Golgi membranes abrogated GBF1 recruitment. Finally, combined in vivo and in vitro measurements indicated that the recruitment to Golgi membranes via a putative receptor requires only the HDS1 and HDS2 domains in the C-terminal half of GBF1.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membranas Intracelulares/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Guanosina Difosfato/metabolismo , Células HeLa , Humanos , Transporte Proteico/fisiologia
3.
Virology ; 475: 74-87, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462348

RESUMO

Apoptosis serves as a powerful defense against damaged or pathogen-infected cells. Since apoptosis is an effective defense against viral infection, many viruses including poxviruses, encode proteins to prevent or delay apoptosis. Here we show that ectromelia virus, the causative agent of mousepox encodes an anti-apoptotic protein EVM025. Here we demonstrate that expression of functional EVM025 is crucial to prevent apoptosis triggered by virus infection and staurosporine. We demonstrate that the expression of EVM025 prevents the conformational activation of the pro-apoptotic proteins Bak and Bax, allowing the maintenance of mitochondrial membrane integrity upon infection with ECTV. Additionally, EVM025 interacted with intracellular Bak. We were able to demonstrate that EVM025 ability to inhibit Bax activation is a function of its ability to inhibit the activity of an upstream BH3 only protein Bim. Collectively, our data indicates that EVM025 inhibits apoptosis by sequestering Bak and inhibiting the activity of Bak and Bax.


Assuntos
Apoptose/fisiologia , Vírus da Ectromelia/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Vírus da Ectromelia/genética , Fibroblastos/metabolismo , Deleção de Genes , Humanos , Camundongos , Proteínas Virais/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
J Cell Sci ; 127(Pt 2): 354-64, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24213530

RESUMO

ADP-ribosylation factors (Arfs) play central roles in the regulation of vesicular trafficking through the Golgi. Arfs are activated at the Golgi membrane by guanine-nucleotide-exchange factors (GEFs) that are recruited from cytosol. Here, we describe a novel mechanism for the regulation of recruitment and activity of the ArfGEF Golgi-specific BFA resistance factor 1 (GBF1). Conditions that alter the cellular Arf-GDP:Arf-GTP ratio result in GBF1 recruitment. This recruitment of GBF1 occurs selectively on cis-Golgi membranes in direct response to increased Arf-GDP. GBF1 recruitment requires Arf-GDP myristoylation-dependent interactions suggesting regulation of a membrane-bound factor. Once recruited, GBF1 causes increased Arf-GTP production at the Golgi, consistent with a feed-forward self-limiting mechanism of Arf activation. This mechanism is proposed to maintain steady-state levels of Arf-GTP at the cis-Golgi during cycles of Arf-dependent trafficking events.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Retroalimentação Fisiológica , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Biocatálise , Polaridade Celular , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/metabolismo
5.
J Biol Chem ; 281(51): 39728-39, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17074758

RESUMO

Vaccinia virus, the prototypic member of the orthopoxvirus genus, encodes the mitochondrial-localized protein F1L that functions to protect cells from apoptotic death and inhibits cytochrome c release. We previously showed that F1L interacts with the pro-apoptotic Bcl-2 family member Bak and inhibits activation of Bak following an apoptotic stimulus (Wasilenko, S. T., Banadyga, L., Bond, D., and Barry, M. (2005) J. Virol. 79, 14031-14043). In addition to Bak, the pro-apoptotic protein Bax is also capable of initiating cytochrome c release suggesting that vaccinia virus infection could also inhibit Bax activity. Here we show that F1L inhibits the activity of the pro-apoptotic protein Bax by inhibiting oligomerization and N-terminal activation of Bax. F1L expression also inhibited the subcellular redistribution of Bax to the mitochondria and the insertion of Bax into the outer mitochondrial membrane. The ability of F1L to inhibit Bax activation does not require Bak, because F1L expression inhibited cytochrome c release and Bax activation in Bak-deficient cells. No interaction between Bax and F1L was detected during infection, suggesting that F1L functions upstream of Bax activation. Notably, F1L was capable of interacting with the BH3-only protein BimL as shown by co-immunoprecipitation, and F1L expression inhibited apoptosis induced by BimL. These studies suggest that, in addition to interacting with the pro-apoptotic protein Bak, F1L also functions to indirectly inhibit the activation of Bax, likely by interfering with the pro-apoptotic activity of BH3-only proteins such as BimL.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/química , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana/química , Camundongos , Microscopia Confocal , Mitocôndrias/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA