Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Otol Rhinol Laryngol ; 133(6): 581-589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491861

RESUMO

OBJECTIVE: Compare ventilation pressures of 2 endotracheal tube designs used in laser airway surgery in clinical practice and with a benchtop model to elucidate differences and understand the design elements that impact airflow dynamics. METHODS: Ventilatory and aerodynamic characteristics of the laser resistant stainless-steel endotracheal tube (LRSS-ET) design and the laser resistant aluminum-wrapped silicone endotracheal tube (LRAS-ET) design were compared. Ventilatory parameters were collected for 32 patients undergoing laser-assisted airway surgery through retrospective chart review. An in vitro benchtop simulation measured average resistance and centerline turbulence intensity of both designs at various diameters and physiological frequencies. RESULTS: Baseline patient characteristics did not differ between the 2 groups. Clinically, the median LRAS-ET peak inspiratory pressure (PIP; 21.00 cm H2O) was significantly decreased compared to LRSS-ET PIP (34.67 cm H2O). In benchtop simulation, the average PIP of the LRAS-ET was significantly lower at all sizes and frequencies. The LRSS-ET consistently demonstrated an increased resistance, although no patterns were observed in turbulence intensity data between both designs. CONCLUSION: The benchtop model demonstrated increased resistance in the LRSS-ET compared to the LRAS-ET at all comparable sizes. This finding is supported by retrospective ventilatory pressures during laser airway surgery, which show significantly increased PIPs when comparing identically sized inner diameters. Given the equivocal turbulence intensity data, these differences in resistance and pressures are likely caused by wall roughness and intraluminal presence of tubing, not inlet or outlet geometries. The decreased PIPs of the LRAS-ET should assist in following lung protective ventilator management strategies and reduce risk of pulmonary injury and hemodynamic instability to the patient.


Assuntos
Desenho de Equipamento , Intubação Intratraqueal , Humanos , Intubação Intratraqueal/instrumentação , Feminino , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Terapia a Laser/métodos , Idoso , Adulto , Resistência das Vias Respiratórias/fisiologia , Lasers
2.
Bioinspir Biomim ; 18(1)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36347044

RESUMO

When swimming near a solid planar boundary, bio-inspired propulsors can naturally equilibrate to certain distances from that boundary. How these equilibria are affected by asymmetric swimming kinematics is unknown. We present here a study of near-boundary pitching hydrofoils based on water channel experiments and potential flow simulations. We found that asymmetric pitch kinematics do affect near-boundary equilibria, resulting in the equilibria shifting either closer to or away from the planar boundary. The magnitude of the shift depends on whether the pitch kinematics have spatial asymmetry (e.g. a bias angle,θ0) or temporal asymmetry (e.g. a stroke-speed ratio,τ). Swimming at stable equilibrium requires less active control, while shifting the equilibrium closer to the boundary can result in higher thrust with no measurable change in propulsive efficiency. Our work reveals how asymmetric kinematics could be used to fine-tune a hydrofoil's interaction with a nearby boundary, and it offers a starting point for understanding how fish and birds use asymmetries to swim near substrates, water surfaces, and sidewalls.


Assuntos
Aves , Natação , Animais , Fenômenos Biomecânicos , Peixes
3.
Bioinspir Biomim ; 16(5)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34352733

RESUMO

Fish are highly maneuverable compared to human-made underwater vehicles. Maneuvers are inherently transient, so they are often studied via observations of fish and fish-like robots, where their dynamics cannot be recorded directly. To study maneuvers in isolation, we designed a new kind of wireless carriage whose air bushings allow a hydrofoil to maneuver semi-autonomously in a water channel. We show that modulating the hydrofoil's frequency, amplitude, pitch bias, and stroke speed ratio (pitching speed of left vs right stroke) produces streamwise and lateral maneuvers with mixed effectiveness. Modulating pitch bias, for example, produces quasi-steady lateral maneuvers with classic reverse von Kármán wakes, whereas modulating the stroke speed ratio produces sudden yaw torques and vortex pairs like those observed behind turning zebrafish. Our findings provide a new framework for considering in-plane maneuvers and streamwise/lateral trajectory corrections in fish and fish-inspired robots.


Assuntos
Peixe-Zebra , Animais , Fenômenos Biomecânicos , Humanos
4.
Biomimetics (Basel) ; 4(3)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336575

RESUMO

Fish must maneuver laterally to maintain their position in schools or near solid boundaries. Unsteady hydrodynamic models, such as the Theodorsen and Garrick models, predict forces on tethered oscillating hydrofoils aligned with the incoming flow. How well these models predict forces when bio-inspired hydrofoils are free to move laterally or when angled relative to the incoming flow is unclear. We tested the ability of five linear models to predict a small lateral adjustment made by a hydrofoil undergoing biased pitch oscillations. We compared the models to water channel tests in which air bushings gave a rigid pitching hydrofoil lateral freedom. What we found is that even with no fitted coefficients, linear models predict some features of the lateral response, particularly high frequency features like the amplitude and phase of passive heave oscillations. To predict low frequency features of the response, such as overshoot and settling time, we needed a semiempirical model based on tethered force measurements. Our results suggest that fish and fish-inspired vehicles could use linear models for some aspects of lateral station-keeping, but would need nonlinear or semiempirical wake models for more advanced maneuvers.

5.
J R Soc Interface ; 14(136)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29118116

RESUMO

The aerodynamic performance of vehicles and animals, as well as the productivity of turbines and energy harvesters, depends on the turbulence intensity of the incoming flow. Previous studies have pointed at the potential benefits of active closed-loop turbulence control. However, it is unclear what the minimal sensory and algorithmic requirements are for realizing this control. Here we show that very low-bandwidth anemometers record sufficient information for an adaptive control algorithm to converge quickly. Our online Newton-Raphson algorithm tunes the turbulence in a recirculating wind tunnel by taking readings from an anemometer in the test section. After starting at 9% turbulence intensity, the algorithm converges on values ranging from 10% to 45% in less than 12 iterations within 1% accuracy. By down-sampling our measurements, we show that very-low-bandwidth anemometers record sufficient information for convergence. Furthermore, down-sampling accelerates convergence by smoothing gradients in turbulence intensity. Our results explain why low-bandwidth anemometers in engineering and mechanoreceptors in biology may be sufficient for adaptive control of turbulence intensity. Finally, our analysis suggests that, if certain turbulent eddy sizes are more important to control than others, frugal adaptive control schemes can be particularly computationally effective for improving performance.


Assuntos
Algoritmos , Modelos Teóricos , Animais , Abelhas/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Mariposas/fisiologia , Percas/fisiologia , Salmão/fisiologia , Natação/fisiologia
6.
R Soc Open Sci ; 4(3): 160960, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405384

RESUMO

Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

7.
Bioinspir Biomim ; 12(1): 016004, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27921999

RESUMO

There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift generation with flapping wings.


Assuntos
Movimentos do Ar , Voo Animal/fisiologia , Modelos Biológicos , Papagaios/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Reologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-26382336

RESUMO

We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

9.
Bioinspir Biomim ; 9(3): 036008, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24667542

RESUMO

We present experimental evidence for the hydrodynamic benefits of swimming 'in ground effect', that is, near a solid boundary. This situation is common to fish that swim near the substrate, especially those that are dorsoventrally compressed, such as batoids and flatfishes. To investigate flexible propulsors in ground effect, we conduct force measurements and particle image velocimetry on flexible rectangular panels actuated at their leading edge near the wall of a water channel. For a given actuation mode, the panels swim faster near the channel wall while maintaining the same propulsive economy. In conditions producing net thrust, panels produce more thrust near the ground. When operating in resonance, swimming near the ground can also increase propulsive efficiency. Finally, the ground can act to suppress three-dimensional modes, thereby increasing thrust and propulsive efficiency. The planform considered here is non-biological, but the hydrodynamic benefits are likely to apply to more complex geometries, especially those where broad flexible propulsors are involved such as fish bodies and fins. Such fish could produce more thrust by swimming near the ground, and in some cases do so more efficiently.


Assuntos
Nadadeiras de Animais/fisiologia , Biomimética/instrumentação , Biomimética/métodos , Modelos Biológicos , Reologia/métodos , Navios/instrumentação , Natação/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Propriedades de Superfície , Viscosidade
10.
Langmuir ; 29(5): 1427-34, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23293921

RESUMO

We present an analytical solution for the shape of a fluid-fluid interface near a nanoscale solid sphere, which is a configuration motivated by common measurements with an atomic force microscope. The forces considered are surface tension, gravity, and the van der Waals attraction. The nonlinear governing equation has been solved previously using the method of matched asymptotic expansions, and this requires that the surface tension forces far exceed those of gravity, i.e., the Bond number is much less than one. We first present this method using a physically relevant scaling of the equations, then offer a new analytical solution valid for all Bond numbers. We show that one configuration with a large effective Bond number, and thus one requiring our new solution, is a nanothick liquid film spread over a solid substrate. The scaling implications of both analytical methods are considered, and both are compared with numerical solutions of the full equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA