Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1164044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360158

RESUMO

The potential for novel applications of classical hormones, such as gonadotropin-releasing hormone (GnRH) and growth hormone (GH), to counteract neural harm is based on their demonstrated neurotrophic effects in both in vitro and in vivo experimental models and a growing number of clinical trials. This study aimed to investigate the effects of chronic administration of GnRH and/or GH on the expression of several proinflammatory and glial activity markers in damaged neural tissues, as well as on sensory recovery, in animals submitted to thoracic spinal cord injury (SCI). Additionally, the effect of a combined GnRH + GH treatment was examined in comparison with single hormone administration. Spinal cord damage was induced by compression using catheter insufflation at thoracic vertebrae 10 (T10), resulting in significant motor and sensory deficits in the hindlimbs. Following SCI, treatments (GnRH, 60 µg/kg/12 h, IM; GH, 150 µg/kg/24 h, SC; the combination of both; or vehicle) were administered during either 3 or 5 weeks, beginning 24 h after injury onset and ending 24 h before sample collection. Our results indicate that a chronic treatment with GH and/or GnRH significantly reduced the expression of proinflammatory (IL6, IL1B, and iNOS) and glial activity (Iba1, CD86, CD206, vimentin, and GFAP) markers in the spinal cord tissue and improved sensory recovery in the lesioned animals. Furthermore, we found that the caudal section of the spinal cord was particularly responsive to GnRH or GH treatment, as well as to their combination. These findings provide evidence of an anti-inflammatory and glial-modulatory effect of GnRH and GH in an experimental model of SCI and suggest that these hormones can modulate the response of microglia, astrocytes, and infiltrated immune cells in the spinal cord tissue following injury.

2.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373545

RESUMO

This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio do Crescimento/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Animais , Sistema Nervoso Central/metabolismo , Quimioterapia Combinada , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/uso terapêutico , Hormônio do Crescimento/administração & dosagem , Hormônio do Crescimento/uso terapêutico , Humanos , Fármacos Neuroprotetores/administração & dosagem
3.
Acta Neurobiol Exp (Wars) ; 78(4): 352-357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30624434

RESUMO

It has been reported that gonadotropin­releasing hormone (GnRH), and its analogue leuprolide acetate (LA), have neurotrophic properties; particularly in the regeneration of injured spinal cord in animal models and in the case of a patient with spinal cord injury (SCI). The aim of this study was to establish whether treatment with LA improves sensitivity, motor activity and independence in patients with chronic SCI. Patients were treated LA once a month for six months. They were evaluated at the beginning and at the end of treatment; using a sensitivity and motor impairment scale, according to the American Spinal Injury Association (ASIA), and grade of independence scale; employing the spinal cord independence measure (SCIM). Statistical analysis showed a significant improvement in the ASIA sensory score and the SCIM score when comparing the initial versus final evaluation after six months of LA administration. Some patients showed an increase in frequency of bowel movements. Treatment with LA induces improvements in sensitivity, motor activity and independence in patients with chronic SCI. One advantage of this protocol is that it is a non-invasive method of easy and safe application, with few side effects.


Assuntos
Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Leuprolida/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Adolescente , Adulto , Doença Crônica , Feminino , Hormônio Liberador de Gonadotropina/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA