RESUMO
The characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case, [ Cr ( OH 2 ) 6 ] 3 + / [ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case, [ Fe ( CN ) 6 ] 4 - / [ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from [ Cr ( OH 2 ) 6 ] 3 + to [ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From [ Fe ( CN ) 6 ] 4 - to [ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct π back-donation disparity could be confirmed by comparison with the isolated CN - system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications.
RESUMO
LModeAGen, a new protocol for the automatic determination of a nonredundant, complete set of local vibrational modes is reported, which is based on chemical graph concepts. Whereas local mode properties can be calculated for a selection of parameters targeting specific local modes of interest, a complete set of nonredundant local mode parameters is requested for the adiabatic connection scheme (ACS), relating each local vibrational mode with a normal mode counterpart, and for the decomposition of normal modes (CNM) in terms of local mode contributions, a unique way to analyze vibrational spectra. So far, nonredundant parameter sets have been generated manually following chemical intuition or from a set of redundant parameters in a trial-and-error fashion, which has hampered the study of larger systems with hundreds of parameters. LModeAGen was successfully applied for a test set of 11 systems, ranging from small molecules to the large QM (>100 atoms) subsystem of carbomonoxy-neuroglobin protein, described with a hybrid QM/MM method. The ωB97X-D/aug-cc-pVDZ, M06L/def2-TZVP, and QM/MM ωB97X-D/6-31G(d,p)/AMBER model chemistries were adopted for the description of the molecules in the test set. Our new protocol is an important step forward for a routine ACS and CNM analysis of the vibrational spectra of complex and large systems with hundreds of atoms, providing new access to important encoded electronic structure information.
Assuntos
Teoria Quântica , Vibração , Proteínas/químicaRESUMO
This Feature Article starts highlighting some recent experimental and theoretical advances in the field of IR and Raman spectroscopy, giving a taste of the breadth and dynamics of this striving field. The local mode theory is then reviewed, showing how local vibrational modes are derived from fundamental normal modes. New features are introduced that add to current theoretical efforts: (i) a unique measure of bond strength based on local mode force constants ranging from bonding in single molecules in different environments to bonding in periodic systems and crystals and (ii) a new way to interpret vibrational spectra by pinpointing and probing interactions between particular bond stretching contributions to the normal modes. All of this represents a means to work around the very nature of normal modes, namely that the vibrational motions in polyatomic molecules are delocalized. Three current focus points of the local mode analysis are reported, demonstrating how the local mode analysis extracts important information hidden in vibrational spectroscopy data supporting current experiments: (i) metal-ligand bonding in heme proteins, such as myoglobin and neuroglobin; (ii) disentanglement of DNA normal modes; and (iii) hydrogen bonding in water clusters and ice. Finally, the use of the local mode analysis by other research groups is summarized. Our vision is that in the future local mode analysis will be routinely applied by the community and that this Feature Article serves as an incubator for future collaborations between experiment and theory.
Assuntos
Análise Espectral Raman , Vibração , Ligação de Hidrogênio , Água/química , DNA/químicaRESUMO
A complete mechanism for the â¢OH-initiated atmospheric decomposition of the pesticides chlorpyrifos and chlorpyrifos-methyl is proposed, incorporating additional studies on the competing reaction with singlet oxygen. The computational study is based on density functional theory (DFT) at the double-hybrid functional level to treat static correlation in the calculations of energy barriers. Reaction of the P-bonded intermediate with 1O2 has a small energy barrier of ~ 2 kcal mol-1, generating the Oxone compound and the HOSO⢠radical, with a reaction free energy of - 49.8 kcal/mol for the chlorpyrifos reaction pathway. Direct reaction of the pesticides with singlet oxygen is unlikely to happen due to the exceedingly high energy barrier of ~ 52 kcal/mol. However, in aqueous solution, the activation energy reduces dramatically and changes the reaction thermodynamics, making it kinetically accessible and thermodynamically viable.
RESUMO
Based on density functional theory (DFT) electronic structure calculations with dispersion correction, we propose new reaction pathways in which no extra reaction step is necessary to account for the formation of 3,5,6-trichloro-2-pyridynol (TCP) within the process of tropospheric OH-initiated unimolecular decomposition of chlorpyrifos (CLP) and chlorpyrifos-methyl (CLPM). Chlorpyrifos and its analogous compound are among the most used organophosphorus pesticides worldwide, and their unimolecular decomposition in the troposphere is a dominant process of removal in the gas phase. The reaction pathways that we put forward have turned out to be the most exergonic ones among the three possible routes for the attack of the hydroxyl radical to the thiophosphoryl (PâS) bond of both CLP and CLPM. The results showed that the reaction is thermodynamically controlled with the formation of P-bonded adducts via a six-membered ring. The unimolecular decomposition of such reactive intermediates takes place with small energy barriers (less than 3 kcal mol-1) and is distinguished by hydrogen transfer to the nitrogen atom of the aromatic ring, resulting in the formation of 3,5,6-trichloro-2-pyridinol (TCP) and dialkyl phosphate radical (DAP·) product complexes in a single step.