Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050510

RESUMO

Pixelated LGADs have been established as the baseline technology for timing detectors for the High Granularity Timing Detector (HGTD) and the Endcap Timing Layer (ETL) of the ATLAS and CMS experiments, respectively. The drawback of segmenting an LGAD is the non-gain area present between pixels and the consequent reduction in the fill factor. To overcome this issue, the inverse LGAD (iLGAD) technology has been proposed by IMB-CNM to enhance the fill factor and provide excellent tracking capabilities. In this work, we explore the use of iLGAD sensors for surface damage irradiation by developing a new generation of iLGADs, the periphery of which is optimized to improve the performance of irradiated sensors. The fabricated iLGAD sensors exhibit good electrical performances before and after X-ray irradiation.

2.
Med Phys ; 50(1): 570-581, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36066129

RESUMO

BACKGROUND: Empirical data in proton therapy indicate that relative biological effectiveness (RBE) is not constant, and it is directly related to the linear energy transfer (LET). The experimental assessment of LET with high resolution would be a powerful tool for minimizing the LET hot spots in intensity-modulated proton therapy, RBE- or LET-guided evaluation and optimization to achieve biologically optimized proton plans, verifying the theoretical predictions of variable proton RBE models, and so on. This could impact clinical outcomes by reducing toxicities in organs at risk. PURPOSE: The present work shows the first 2D LET maps obtained at a proton therapy facility using the double scattering delivery mode in clinical conditions by means of new silicon 3D-cylindrical microdetectors. METHODS: The device consists of a matrix of 121 independent silicon-based detectors that have 3D-cylindrical electrodes of 25-µm diameter and 20-µm depth, resulting each one of them in a well-defined micrometric radiation sensitive volume etched inside the silicon. They have been specifically designed for a hadron therapy, improving the performance of current silicon-based microdosimeters. Microdosimetry spectra were obtained at different positions of the Bragg curve by using a water-equivalent phantom along an 89-MeV pristine proton beam generated in the Y1 proton passive scattering beamline of the Orsay Proton Therapy Centre (Institut Curie, France). RESULTS: Microdosimetry 2D-maps showing the variation of the lineal energy with depth in the three dimensions were obtained in situ during irradiation at clinical fluence rates (∼108  s-1  cm-2 ) for the first time with a spatial resolution of 200 µm, the highest achieved in the transverse plane so far. The experimental results were cross-checked with Monte Carlo simulations and a good agreement between the spectra shapes was found. The experimental frequency-mean lineal energy values in silicon were 1.858 ± 0.019 keV µm-1 at the entrance, 2.61 ± 0.03 keV µm-1 at the proximal distance, 4.97 ± 0.05 keV µm-1 close to the Bragg peak, and 8.6 ± 0.1 keV µm-1 at the distal edge. They are in good agreement with the expected trends in the literature in clinical proton beams. CONCLUSIONS: We present the first 2D microdosimetry maps obtained in situ during irradiation at clinical fluence rates in proton therapy. Our results show that the arrays of 3D-cylindrical microdetectors are a reliable microdosimeter to evaluate LET maps not only in the longitudinal axis of the beam, but also in the transverse plane allowing for LET characterization in three dimensions. This work is a proof of principle showing the capacity of our system to deliver LET 2D maps. This kind of experimental data is needed to validate variable proton RBE models and to optimize LET-guided plans.


Assuntos
Terapia com Prótons , Prótons , Radiometria , Silício , Eficiência Biológica Relativa , Método de Monte Carlo
3.
Sci Rep ; 12(1): 12240, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851050

RESUMO

The present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Each system consists of arrays of independent microdetectors covering 2 mm[Formula: see text]2 mm and 0.4 mm[Formula: see text]12 cm radiation sensitive areas, the sensor distributions are arranged in layouts of 11[Formula: see text]11 microdetectors and 3[Formula: see text]3 multi-arrays, respectively. We have performed proton irradiations at several energies to compare the microdosimetry performance of the two systems, which have different spatial resolution and detection surface. The unitcell of both arrays is a 3D cylindrical diode with a 25 [Formula: see text]m diameter and a 20 [Formula: see text]m depth that results in a welldefined and isolated radiation sensitive micro-volume etched inside a silicon wafer. Measurements were carried out at the Accélérateur Linéaire et Tandem à Orsay (ALTO) facility by irradiating the two detection systems with monoenergetic proton beams from 6 to 20 MeV at clinical-equivalent fluence rates. The microdosimetry quantities were obtained with a spatial resolution of 200 [Formula: see text]m and 600 [Formula: see text]m for the 11[Formula: see text]11 system and for the 3[Formula: see text]3 multi-array system, respectively. Experimental results were compared with Monte Carlo simulations and an overall good agreement was found. The good performance of both microdetector arrays demonstrates that this architecture and both configurations can be used clinically as microdosimeters for measuring the lineal energy distributions and, thus, for RBE optimization of hadron therapy treatments. Likewise, the results have shown that the devices can be also employed as a multipurpose device for beam monitoring in particle accelerators.


Assuntos
Terapia com Prótons , Radiometria , Método de Monte Carlo , Prótons , Radiometria/métodos , Silício
4.
Micromachines (Basel) ; 11(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353092

RESUMO

This paper provides an overview of 3D detectors fabrication technology developed in the clean room of the Microelectronics Institute of Barcelona (IMB-CNM). Emphasis is put on manufacturability, especially on stress and bow issues. Some of the technological solutions proposed at IMB-CNM to improve manufacturability are presented. Results and solutions from other research institutes are also mentioned. Analogy with through-silicon-via technology is drawn. This article aims at giving hints of the technology improvements implemented to upgrade from a R&D process to a mature technology.

5.
Micromachines (Basel) ; 11(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260634

RESUMO

The present overview describes the evolution of new microdosimeters developed in the National Microelectronics Center in Spain (IMB-CNM, CSIC), ranging from the first ultra-thin 3D diodes (U3DTHINs) to the advanced 3D cylindrical microdetectors, which have been developed over the last 10 years. In this work, we summarize the design, main manufacture processes, and electrical characterization of these devices. These sensors were specifically customized for use in particle therapy and overcame some of the technological challenges in this domain, namely the low noise capability, well-defined sensitive volume, high spatial resolution, and pile-up robustness. Likewise, both architectures reduce the loss of charge carriers due to trapping effects, the charge collection time, and the voltage required for full depletion compared to planar silicon detectors. In particular, a 3D‒cylindrical architecture with electrodes inserted into the silicon bulk and with a very well‒delimited sensitive volume (SV) mimicked a cell array with shapes and sizes similar to those of mammalian cells for the first time. Experimental tests of the carbon beamlines at the Grand Accélérateur National d'Lourds (GANIL, France) and Centro Nazionale Adroterapia Oncologica (CNAO, Italy) showed the feasibility of the U3DTHINs in hadron therapy beams and the good performance of the 3D‒cylindrical microdetectors for assessing linear energy distributions of clinical beams, with clinical fluence rates of 5 × 107 s-1cm-2 without saturation. The dose-averaged lineal energies showed a generally good agreement with Monte Carlo simulations. The results indicated that these devices can be used to characterize the microdosimetric properties in hadron therapy, even though the charge collection efficiency (CCE) and electronic noise may pose limitations on their performance, which is studied and discussed herein. In the last 3D‒cylindrical microdetector generation, we considerably improved the CCE due to the microfabrication enhancements, which have led to shallower and steeper dopant profiles. We also summarize the successive microdosimetric characterizations performed with both devices in proton and carbon beamlines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA