Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(1): e17189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909659

RESUMO

Antarctica's extreme environmental conditions impose selection pressures on microbial communities. Indeed, a previous study revealed that bacterial assemblages at the Cierva Point Wetland Complex (CPWC) are shaped by strong homogeneous selection. Yet which bacterial phylogenetic clades are shaped by selection processes and their ecological strategies to thrive in such extreme conditions remain unknown. Here, we applied the phyloscore and feature-level ßNTI indexes coupled with phylofactorization to successfully detect bacterial monophyletic clades subjected to homogeneous (HoS) and heterogenous (HeS) selection. Remarkably, only the HoS clades showed high relative abundance across all samples and signs of putative microdiversity. The majority of the amplicon sequence variants (ASVs) within each HoS clade clustered into a unique 97% sequence similarity operational taxonomic unit (OTU) and inhabited a specific environment (lotic, lentic or terrestrial). Our findings suggest the existence of microdiversification leading to sub-taxa niche differentiation, with putative distinct ecotypes (consisting of groups of ASVs) adapted to a specific environment. We hypothesize that HoS clades thriving in the CPWC have phylogenetically conserved traits that accelerate their rate of evolution, enabling them to adapt to strong spatio-temporally variable selection pressures. Variable selection appears to operate within clades to cause very rapid microdiversification without losing key traits that lead to high abundance. Variable and homogeneous selection, therefore, operate simultaneously but on different aspects of organismal ecology. The result is an overall signal of homogeneous selection due to rapid within-clade microdiversification caused by variable selection. It is unknown whether other systems experience this dynamic, and we encourage future work evaluating the transferability of our results.


Assuntos
Microbiota , Áreas Alagadas , Filogenia , Regiões Antárticas , Bactérias/genética
2.
Environ Microbiol ; 24(8): 3486-3499, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049116

RESUMO

As functional traits are conserved at different phylogenetic depths, the ability to detect community assembly processes can be conditional on the phylogenetic resolution; yet most previous work quantifying their influence has focused on a single level of phylogenetic resolution. Here, we have studied the ecological assembly of bacterial communities from an Antarctic wetland complex, applying null models across different levels of phylogenetic resolution (i.e. clustering ASVs into OTUs with decreasing sequence identity thresholds). We found that the relative influence of the community assembly processes varies with phylogenetic resolution. More specifically, selection processes seem to impose stronger influence at finer (100% sequence similarity ASV) than at coarser (99%-97% sequence similarity OTUs) resolution. We identified environmental features related with the ecological processes and propose a conceptual model for the bacterial community assembly in this Antarctic ecosystem. Briefly, eco-evolutionary processes appear to be leading to different but very closely related ASVs in lotic, lentic and terrestrial environments. In all, this study shows that assessing community assembly processes at different phylogenetic resolutions is key to improve our understanding of microbial ecology. More importantly, a failure to detect selection processes at coarser phylogenetic resolution does not imply the absence of such processes at finer resolutions.


Assuntos
Ecossistema , Áreas Alagadas , Regiões Antárticas , Bactérias/genética , Filogenia
3.
Sci Total Environ ; 701: 134601, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31734485

RESUMO

Glyphosate-based herbicides are the most commonly used herbicide worldwide. Although glyphosate is known to be toxic to aquatic organisms, it can also have stimulatory effects on small-size (ø <2 µm) cyanobacteria (Pcy) able to metabolize and degrade glyphosate and AMPA. Several previous experimental studies in micro- and mesocosms reported increases of Pcy abundance in response to glyphosate additions, but comparable field evidence is presently unavailable. We surveyed a large geographical area in order to collect information on Pcy abundance from lakes within the Pampa region (with over three decades of glyphosate usage) and lakes from Patagonia (with virtually no history of glyphosate usage). Fifty-two Pampean lakes and 24 Patagonian lakes were surveyed. We used three indicators of glyphosate impact: herbicide concentration, the presence of phosphonate metabolism genes (responsible for glyphosate and AMPA degradation) in environmental DNA samples, and descriptors of land use in the surrounding area of each lake. We addressed three questions: (1) is there field evidence of stimulatory effects of glyphosate on picocyanobacteria abundance? (2) is the magnitude of the effects of glyphosate in natural systems comparable to that reported under controlled experimental conditions? and (3), how do the effects of glyphosate compare to the effects of other potential environmental drivers of Pcy biomass? The collected evidence is consistent with the hypothesis that long-term agricultural practices relying on glyphosate-based technologies had important effects on freshwater microbial communities, particularly by promoting increases in picocyanobacteria abundance.


Assuntos
Cianobactérias/fisiologia , Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas , Lagos/microbiologia , Agricultura , Poluentes Químicos da Água , Glifosato
4.
BMC Bioinformatics ; 20(1): 274, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138128

RESUMO

BACKGROUND: Flow cytometry (FCM) is one of the most commonly used technologies for analysis of numerous biological systems at the cellular level, from cancer cells to microbial communities. Its high potential and wide applicability led to the development of various analytical protocols, which are often not interchangeable between fields of expertise. Environmental science in particular faces difficulty in adapting to non-specific protocols, mainly because of the highly heterogeneous nature of environmental samples. This variety, although it is intrinsic to environmental studies, makes it difficult to adjust analytical protocols to maintain both mathematical formalism and comprehensible biological interpretations, principally for questions that rely on the evaluation of differences between cytograms, an approach also termed cytometric diversity. Despite the availability of promising bioinformatic tools conceived for or adapted to cytometric diversity, most of them still cannot deal with common technical issues such as the integration of differently acquired datasets, the optimal number of bins, and the effective correlation of bins to previously known cytometric populations. RESULTS: To address these and other questions, we have developed flowDiv, an R language pipeline for analysis of environmental flow cytometry data. Here, we present the rationale for flowDiv and apply the method to a real dataset from 31 freshwater lakes in Patagonia, Argentina, to reveal significant aspects of their cytometric diversities. CONCLUSIONS: flowDiv provides a rather intuitive way of proceeding with FCM analysis, as it combines formal mathematical solutions and biological rationales in an intuitive framework specifically designed to explore cytometric diversity.


Assuntos
Biodiversidade , Citometria de Fluxo/métodos , Software , Humanos , Lagos , Microbiota , Análise de Componente Principal , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA