Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 34(3): 498-513, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508693

RESUMO

Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.


Assuntos
Genoma , Hidrozoários , Animais , Hidrozoários/genética , Evolução Molecular , Transcriptoma , Células-Tronco/metabolismo , Masculino , Filogenia , Análise de Célula Única/métodos
2.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411464

RESUMO

Tardigrades, microscopic ecdysozoans known for extreme environment resilience, were traditionally believed to maintain a constant cell number after completing embryonic development, a phenomenon termed eutely. However, sporadic reports of dividing cells have raised questions about this assumption. In this study, we explored tardigrade post-embryonic cell proliferation using the model species Hypsibius exemplaris. Comparing hatchlings to adults, we observed an increase in the number of storage cells, responsible for nutrient storage. We monitored cell proliferation via 5-ethynyl-2'-deoxyuridine (EdU) incorporation, revealing large numbers of EdU+ storage cells during growth, which starvation halted. EdU incorporation associated with molting, a vital post-embryonic development process involving cuticle renewal for further growth. Notably, DNA replication inhibition strongly reduced EdU+ cell numbers and caused molting-related fatalities. Our study is the first to demonstrate using molecular approaches that storage cells actively proliferate during tardigrade post-embryonic development, providing a comprehensive insight into replication events throughout their somatic growth. Additionally, our data underscore the significance of proper DNA replication in tardigrade molting and survival. This work definitely establishes that tardigrades are not eutelic, and offers insights into cell cycle regulation, replication stress, and DNA damage management in these remarkable creatures as genetic manipulation techniques emerge within the field.


Assuntos
Tardígrados , Adulto , Feminino , Humanos , Animais , Proliferação de Células , Dano ao DNA , Replicação do DNA , Desenvolvimento Embrionário
3.
bioRxiv ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37786714

RESUMO

Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.

4.
Open Biol ; 12(9): 220120, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36069077

RESUMO

Nucleostemin (NS) is a vertebrate gene preferentially expressed in stem and cancer cells, which acts to regulate cell cycle progression, genome stability and ribosome biogenesis. NS and its paralogous gene, GNL3-like (GNL3L), arose in the vertebrate clade after a duplication event from their orthologous gene, G protein Nucleolar 3 (GNL3). Research on invertebrate GNL3, however, has been limited. To gain a greater understanding of the evolution and functions of the GNL3 gene, we have performed studies in the hydrozoan cnidarian Hydractinia symbiolongicarpus, a colonial hydroid that continuously generates pluripotent stem cells throughout its life cycle and presents impressive regenerative abilities. We show that Hydractinia GNL3 is expressed in stem and germline cells. The knockdown of GNL3 reduces the number of mitotic and S-phase cells in Hydractinia larvae of different ages. Genome editing of Hydractinia GNL3 via CRISPR/Cas9 resulted in colonies with reduced growth rates, polyps with impaired regeneration capabilities, gonadal morphological defects, and low sperm motility. Collectively, our study shows that GNL3 is an evolutionarily conserved stem cell and germline gene involved in cell proliferation, animal growth, regeneration and sexual reproduction in Hydractinia, and sheds new light into the evolution of GNL3 and of stem cell systems.


Assuntos
Hidrozoários , Animais , Proliferação de Células , Edição de Genes , Hidrozoários/genética , Masculino , Motilidade dos Espermatozoides , Células-Tronco , Vertebrados/genética
5.
Sci Rep ; 10(1): 17119, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033276

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Sci Rep ; 10(1): 12806, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732955

RESUMO

Analyzing gene function in a broad range of research organisms is crucial for understanding the biological functions of genes and their evolution. Recent studies have shown that short hairpin RNAs (shRNAs) can induce gene-specific knockdowns in two cnidarian species. We have developed a detailed, straightforward, and scalable method to deliver shRNAs into fertilized eggs of the hydrozoan cnidarian Hydractinia symbiolongicarpus via electroporation, yielding effective gene-targeted knockdowns that can last throughout embryogenesis. Our electroporation protocol allows for the transfection of shRNAs into hundreds of fertilized H. symbiolongicarpus eggs simultaneously with minimal embryo death and no long-term harmful consequences on the developing animals. We show RT-qPCR and detailed phenotypic evidence of our method successfully inducing effective knockdowns of an exogenous gene (eGFP) and an endogenous gene (Nanos2), as well as knockdown confirmation by RT-qPCR of two other endogenous genes. We also provide visual confirmation of successful shRNA transfection inside embryos through electroporation. Our detailed protocol for electroporation of shRNAs in H. symbiolongicarpus embryos constitutes an important experimental resource for the hydrozoan community while also serving as a successful model for the development of similar methods for interrogating gene function in other marine invertebrates.


Assuntos
Cnidários/embriologia , Cnidários/genética , Eletroporação/métodos , Desenvolvimento Embrionário/genética , Técnicas de Silenciamento de Genes/métodos , RNA Interferente Pequeno/genética , Animais , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Proteínas de Ligação a RNA/genética , Transfecção
7.
PLoS Biol ; 18(3): e3000614, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126082

RESUMO

The reproductive hormones that trigger oocyte meiotic maturation and release from the ovary vary greatly between animal species. Identification of receptors for these maturation-inducing hormones (MIHs) and understanding how they initiate the largely conserved maturation process remain important challenges. In hydrozoan cnidarians including the jellyfish Clytia hemisphaerica, MIH comprises neuropeptides released from somatic cells of the gonad. We identified the receptor (MIHR) for these MIH neuropeptides in Clytia using cell culture-based "deorphanization" of candidate oocyte-expressed G protein-coupled receptors (GPCRs). MIHR mutant jellyfish generated using CRISPR-Cas9 editing had severe defects in gamete development or in spawning both in males and females. Female gonads, or oocytes isolated from MIHR mutants, failed to respond to synthetic MIH. Treatment with the cAMP analogue Br-cAMP to mimic cAMP rise at maturation onset rescued meiotic maturation and spawning. Injection of inhibitory antibodies to the alpha subunit of the Gs heterodimeric protein (GαS) into wild-type oocytes phenocopied the MIHR mutants. These results provide the molecular links between MIH stimulation and meiotic maturation initiation in hydrozoan oocytes. Molecular phylogeny grouped Clytia MIHR with a subset of bilaterian neuropeptide receptors, including neuropeptide Y, gonadotropin inhibitory hormone (GnIH), pyroglutamylated RFamide, and luqin, all upstream regulators of sexual reproduction. This identification and functional characterization of a cnidarian peptide GPCR advances our understanding of oocyte maturation initiation and sheds light on the evolution of neuropeptide-hormone systems.


Assuntos
Hidrozoários/fisiologia , Neuropeptídeos/metabolismo , Oócitos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , AMP Cíclico/metabolismo , Feminino , Expressão Gênica , Hidrozoários/genética , Masculino , Mutação , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
8.
Nat Ecol Evol ; 3(5): 801-810, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858591

RESUMO

Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.


Assuntos
Hidrozoários , Animais , Evolução Molecular , Genoma
9.
Development ; 145(2)2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358214

RESUMO

Oocyte meiotic maturation is crucial for sexually reproducing animals, and its core cytoplasmic regulators are highly conserved between species. By contrast, the few known maturation-inducing hormones (MIHs) that act on oocytes to initiate this process are highly variable in their molecular nature. Using the hydrozoan jellyfish species Clytia and Cladonema, which undergo oocyte maturation in response to dark-light and light-dark transitions, respectively, we deduced amidated tetrapeptide sequences from gonad transcriptome data and found that synthetic peptides could induce maturation of isolated oocytes at nanomolar concentrations. Antibody preabsorption experiments conclusively demonstrated that these W/RPRPamide-related neuropeptides account for endogenous MIH activity produced by isolated gonads. We show that the MIH peptides are synthesised by neural-type cells in the gonad, are released following dark-light/light-dark transitions, and probably act on the oocyte surface. They are produced by male as well as female jellyfish and can trigger both sperm and egg release, suggesting a role in spawning coordination. We propose an evolutionary link between hydrozoan MIHs and the neuropeptide hormones that regulate reproduction upstream of MIHs in bilaterian species.


Assuntos
Hidrozoários/crescimento & desenvolvimento , Hidrozoários/fisiologia , Neuropeptídeos/fisiologia , Oócitos/crescimento & desenvolvimento , Oogênese/fisiologia , Sequência de Aminoácidos , Animais , Escuridão , Feminino , Perfilação da Expressão Gênica , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/farmacologia , Hormônios Esteroides Gonadais/fisiologia , Hidrozoários/genética , Luz , Masculino , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Sistemas Neurossecretores/citologia , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oligopeptídeos/fisiologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Oogênese/genética , Especificidade da Espécie
10.
Elife ; 72018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303477

RESUMO

Across the animal kingdom, environmental light cues are widely involved in regulating gamete release, but the molecular and cellular bases of the photoresponsive mechanisms are poorly understood. In hydrozoan jellyfish, spawning is triggered by dark-light or light-dark transitions acting on the gonad, and is mediated by oocyte maturation-inducing neuropeptide hormones (MIHs) released from the ectoderm. We determined in Clytia hemisphaerica that blue-cyan light triggers spawning in isolated gonads. A candidate opsin (Opsin9) was found co-expressed with MIH within specialised ectodermal cells. Opsin9 knockout jellyfish generated by CRISPR/Cas9 failed to undergo oocyte maturation and spawning, a phenotype reversible by synthetic MIH. Gamete maturation and release in Clytia is thus regulated by gonadal photosensory-neurosecretory cells that secrete MIH in response to light via Opsin9. Similar cells in ancestral eumetazoans may have allowed tissue-level photo-regulation of diverse behaviours, a feature elaborated in cnidarians in parallel with expansion of the opsin gene family.


Assuntos
Hidrozoários/fisiologia , Hidrozoários/efeitos da radiação , Opsinas/metabolismo , Animais , Gônadas/química , Hidrozoários/química , Luz , Neuropeptídeos/metabolismo , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA