Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbes Infect ; 25(7): 105149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37169244

RESUMO

The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.


Assuntos
Drosophila melanogaster , Microbioma Gastrointestinal , Animais , Drosophila melanogaster/microbiologia , Cafeína/farmacologia , Longevidade , Sefarose , Sacarose
2.
Microbes Infect ; 24(4): 104946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093552

RESUMO

On quotidian basis, living beings work out an armistice with their microbial flora and a scuffle with invading pathogens to maintain a normal state of health. Although producing virulence factors and escaping the host's immune machinery are the paramount tools used by pathogens in their "arm race" against the host; here, we provide insight into another facet of pathogenic embitterment by presenting evidence of the ability of enteric pathogens to exhibit pathogenicity through modulating metabolic homeostasis in Drosophila melanogaster. We report that Escherichia coli and Shigella sonnei orally infected flies exhibit lipid droplet deprivation from the fat body, irregular accumulation of lipid droplets in the midgut, and significant elevation of systemic glucose and triglyceride levels. Our findings indicate that these detected metabolic alterations in infected flies could be attributed to differential regulation of peptide hormones known to be crucial for lipid metabolism and insulin signaling. Gaining a proper understanding of infection-induced alterations succours in curbing the pathogenesis of enteric diseases and sets the stage for promising therapeutic approaches to quarry infection-induced metabolic disorders.


Assuntos
Drosophila melanogaster , Metabolismo dos Lipídeos , Animais , Drosophila melanogaster/fisiologia , Homeostase , Gotículas Lipídicas/metabolismo , Transdução de Sinais
3.
Vaccines (Basel) ; 9(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960220

RESUMO

As of March 2020, the time when the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic, our existence has been threatened and the lives of millions have been claimed. With this ongoing global issue, vaccines are considered of paramount importance in curtailing the outbreak and probably a prime gamble to bring us back to 'ordinary life'. To date, more than 200 vaccine candidates have been produced, many of which were approved by the Food and Drug Administration (FDA) for emergency use, with the research and discovery phase of their production process passed over. Capering such a chief practice in COVID-19 vaccine development, and manufacturing vaccines at an unprecedented speed brought many challenges into play and raised COVID-19 vaccine remonstrance. In this review, we highlight relevant challenges to global COVID-19 vaccine development, dissemination, and deployment, particularly at the level of large-scale production and distribution. We also delineate public perception on COVID-19 vaccination and outline the main facets affecting people's willingness to get vaccinated.

4.
Vaccines (Basel) ; 9(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696306

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic as of March 2020, creating a global crisis and claiming millions of lives. To halt the pandemic and alleviate its impact on society, economy, and public health, the development of vaccines and antiviral agents against SARS-CoV-2 was a dire need. To date, various platforms have been utilized for SARS-CoV-2 vaccine development, and over 200 vaccine candidates have been produced, many of which have obtained the United States Food and Drug Administration (FDA) approval for emergency use. Despite this successful development and licensure, concerns regarding the safety and efficacy of these vaccines have arisen, given the unprecedented speed of vaccine development and the newly emerging SARS-CoV-2 strains and variants. In this review, we summarize the different platforms used for Coronavirus Disease 2019 (COVID-19) vaccine development, discuss their strengths and limitations, and highlight the major safety concerns and potential risks associated with each vaccine type.

5.
Diabetes Res Clin Pract ; 151: 198-208, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30954515

RESUMO

AIMS: T2DM reach epidemic levels in the Arab countries. In this study, we aimed to perform a systematic review and meta-analysis to underline the susceptibility genetic profile of Arab patients with T2DM that result from SNPs. METHODS: We searched four literature databases (PubMed, Scopus, Science Direct and Web of Science) through January 2019. We included all SNPs in candidate genes with an OR > 1 that were associated with T2DM among Arab patients with T2DM. Statistical programs such as software Review Manager (Version 5.02) and STATA (Version 15.1) were used. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with a random effects model or a fixed effect model depending on the heterogeneity among studies. I2 statistics and Egger's tests were performed to assess heterogeneity and publication bias. RESULTS: Out of 2245 studies, 47 were used for meta-analysis. We captured 31,307 cases and 26,464 controls in which we collected 71 SNPs in 32 genes. A pooled meta-analysis demonstrated 24-69% increase in T2DM risk. Among the 57 SNPs (in 32 genes) that were not included in the meta-analysis, the OR for diabetes ranged from 1.02 to 5.10, with a median of 1.38 (interquartile range 1.33-2.09). Ten studies examined the association between the TCF7L2 polymorphism rs7903146 and T2DM, leading to an aggregated OR of 1.34 (95%CI 1.27-1.41). CONCLUSION: The genetic profile that confer susceptibility to T2DM in Arab patients is diverse. This study may serve as a platform for designing a gene panel for testing the susceptibility to T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Polimorfismo Genético/genética , Mundo Árabe , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA