Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med Rep ; 16(1): 949-956, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28586050

RESUMO

Streptococcus mutans (S. mutans) bacterium is the most well recognized pathogen involved in pathogenesis of dental caries. Its virulence arises from its ability to produce a biofilm and acidogenicity, causing tooth decay. Discovery of natural products capable to inhibit biofilm formation is of high importance for developing health care products. To the best of our knowledge, in all previous scientific reports, a colorimetric assay was applied to test the effect of sumac and methyl gallate (MG) on S. mutans adherence. Quantitative assessment of the developed biofilm should be further performed by applying an optical profilometry assay, and by testing the effect on both surface roughness and thickness parameters of the biofilm. To the best of our knowledge, this is the first study to report the effect of sumac extract and its constituent MG on biofilm formation using an optical profilometry assay. Testing antibacterial activity of the sumac extract and its fractions revealed that MG is the most bioactive component against S. mutans bacteria. It reduced S. mutans biofilm biomass on the polystyrene surface by 68­93%, whereas 1 mg/ml MG was able to decrease the biofilm roughness and thickness on the glass surface by 99%. MG also prevented a decrease in pH level by 97%. These bioactivities of MG occurred in a dose­dependent manner and were significant vs. untreated bacteria. The findings are important for the development of novel pharmaceuticals and formulations of natural products and extracts that possess anti­biofilm activities with primary applications for oral health, and in a broader context, for the treatment of various bacterial infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhus/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/isolamento & purificação , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Saúde Bucal , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Análise Espectral
2.
Environ Monit Assess ; 186(10): 6985-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063534

RESUMO

Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.


Assuntos
Água Potável/química , Monitoramento Ambiental , Metais Pesados/análise , Chuva/química , Cidades/estatística & dados numéricos , Humanos , Oriente Médio , Espectrofotometria Atômica , Estados Unidos , Qualidade da Água/normas
3.
Malariaworld J ; 5: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-38764794

RESUMO

Background: Malaria is a devastating disease, particularly in Africa, due to development of resistance by Plasmodium falciparum against all known antimalarial drugs, including artemisinin. Therefore, the search for new antimalarial drugs is urgently needed, especially drugs that can impede the heme detoxification pathway in the malaria parasite, a crucial requirement for parasite survival in host erythrocytes. Materials and Methods: Water infusions of Artemisia annua plants from two different origins, Cameroon and Luxembourg, were used in this study. A semi-quantitative in vitro method, based on the inhibition of ferriprotoporphyrin IX (FP) biomineralisation developed by Deharo et al. [16], was used to reveal the differences in antimalarial activity of both plants. Reversed phase preparative liquid chromatography coupled to a photo diode array (PDA) detector was also used to test for differences in antimalarial activity. Results: Water extracts from the leaves of the Cameroon plant showed a higher potential antimalarial activity, represented by a higher ability to inhibit ß-haematin formation in vitro than A. annua extracts from Luxembourg. Although extracts of the plants of both origins showed comparable efficiencies at high concentrations, the absorbance value at 405 nm of a 10% dilution of the Cameroon plant extract was 0.075, whereas it was 1.515 for the Luxembourg plant extract. The absorbance is inversely proportional to the antimalarial activity. According to the Prep-HPLC chromatogram of the Cameroon crude sample, seven major compounds at 325 nm were found. However, only four much less pronounced compounds appeared in the Luxembourg crude sample under the same chromatographic conditions and concentration. These were preliminarily identified as polyphenolic compounds. Conclusion: A. annua infusions are widely used by people who cannot afford other treatments. Depending on the cultivation locality different chemical profiles exist. This results in differences in hemozoin formation and will therefore also lead to alterations in antimalarial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA