RESUMO
Background: Bacterial infection causes accumulation of neutrophils that release antimicrobial proteins including heparin-binding protein (HBP). In human airways, this neutrophil accumulation can be re-capitulated via intrabronchial exposure to lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, that also causes a local increase in the neutrophil-mobilizing cytokine IL-26. Although LPS is considered a weak stimulus for HBP release ex vivo, its effect on HBP release in human airways in vivo has not been characterized. Methods: We determined whether intrabronchial exposure to LPS causes concomitant release of HBP and IL-26 in human airways, and whether IL-26 can enhance LPS-induced release of HBP in isolated human neutrophils. Results: We found that the concentration of HBP was markedly increased in bronchoalveolar lavage (BAL) fluid 12, 24, and 48 hours after LPS exposure, and that it displayed a strong and positive correlation with that of IL-26. Moreover, the concentration of HBP in conditioned media from isolated neutrophils was enhanced only after co-stimulation with LPS and IL-26. Conclusions: Taken together, our findings indicate that TLR4 stimulation causes concomitant release of HBP and IL-26 in human airways, and that IL-26 may constitute a required co-stimulant for HBP release in neutrophils, thus enabling the concerted action of HBP and IL-26 in local host defense.
Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Humanos , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Sanguíneas/metabolismo , Adjuvantes ImunológicosRESUMO
Optimizing antibiotic use to control the spread of antimicrobial resistance is a global health priority. The Swedish strategic programme against antibiotic resistance (Strama) has for many years supported the rational use of antibiotics. A key element has been the bottom-up approach, working closely with prescribers at the local level. During the last decade, Strama VG has intensified the efforts in Region Västra Götaland, and a considerable reduction (45%) in antibiotic prescription rates has been achieved. Our aim is to facilitate the local process by engaging local ¼Strama doctors« at each of 200 Primary Health Care (PHC) Centres and at every hospital department. In PHC an appreciated educational model through reflective peer meetings including case discussion, comparison of individual prescribing and teamwork that include all staff, have contributed to the improvement. However, the work needs continuous support by Strama.
Assuntos
Antibacterianos , Padrões de Prática Médica , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , SuéciaRESUMO
Purpose: Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) are common comorbidities in chronic obstructive pulmonary disease (COPD), but the underlying pathogenic mechanisms are poorly understood. Given that these morbidities all display increased neutrophil mobilization, the current study aimed to address whether glucose homeostasis relates to signs of neutrophil mobilization in COPD. Methods: The study population included healthy non-smokers (HNS) and long-term smokers without (LTS) and with COPD (LTS+COPD). No subject had T2DM or MetS. Serum cotinine was quantified to evaluate current smoking. Capillary blood glucose was measured after overnight fasting and during an oral glucose tolerance test (OGTT). Neutrophils were quantified in blood and bronchoalveolar lavage samples (BAL). The neutrophil-related cytokines IL-36α, -ß and -γ were quantified (ELISA) along with IL-6, IL-8, INF-γ and CXCL10 (U-Plex®) in plasma and cell-free BAL fluid (BALF). In addition, we quantified neutrophil elastase (ELISA) and net proteinase activity (substrate assay) in BALF. Results: The LTS+COPD group had lower fasting glucose, greater change in glucose during OGTT and higher neutrophil concentrations in BAL and blood compared with HNS. Fasting glucose correlated in a positive manner with blood neutrophil concentration, forced expiratory volume in 1 second/forced vital capacity ratio (FEV1/FVC) and FEV1 (% of predicted) in LTS+COPD. In this group, the concentration of IL-36α in BALF correlated in a negative manner with fasting glucose, blood neutrophil concentration and FEV1, while the CXCL10 concentration in BALF correlated in a negative manner with glucose at the end of OGTT (120 min). We observed no corresponding correlations for neutrophil elastase, net proteinase or gelatinase activity. Conclusion: In smokers with COPD, altered glucose homeostasis is associated with local and systemic signs of increased neutrophil mobilization, but not with local proteinases. This suggests that other specific aspects of neutrophil mobilization constitute pathogenic factors that affect glucose homeostasis in COPD.
Assuntos
Diabetes Mellitus Tipo 2 , Doença Pulmonar Obstrutiva Crônica , Glucose , Homeostase , Humanos , Elastase de Leucócito , Neutrófilos , FumantesRESUMO
Chronic obstructive pulmonary disease (COPD) is associated with colonization by bacterial pathogens and repeated airway infections, leading to exacerbations and impaired lung function. The highly glycosylated mucins in the mucus lining the airways are an important part of the host defense against pathogens. However, mucus accumulation can contribute to COPD pathology. Here, we examined whether inflammation is associated with glycosylation changes that affect interactions between airway mucins and pathogens. We isolated mucins from lower airway samples (n = 4-9) from long-term smokers with and without COPD and from never-smokers. The most abundant terminal glycan moiety was N-acetylneuraminic acid (Neu5Ac) among smokers with and without COPD and N-acetyl-hexoseamine among never-smokers. Moraxella catarrhalis bound to MUC5 mucins from smokers with and without COPD. M. catarrhalis binding correlated with inflammatory parameters and Neu5Ac content. M. catarrhalis binding was abolished by enzymatic removal of Neu5Ac. Furthermore, M. catarrhalis bound to α2,6 sialyl-lactose, suggesting that α2,6 sialic acid contributes to M. catarrhalis binding to mucins. Furthermore, we detected more M. catarrhalis binding to mucins from patients with pneumonia than to those from control subjects (n = 8-13), and this binding correlated with C-reactive protein and Neu5Ac levels. These results suggest a key role of inflammation-induced Neu5Ac in the adhesion of M. catarrhalis to airway mucins. The inflammation-induced ability of MUC5 mucins to bind M. catarrhalis is likely a host defense mechanism in the healthy lung, although it cannot be excluded that impaired mucociliary clearance limits the effectiveness of this defense in patients with COPD.
Assuntos
Pulmão/metabolismo , Moraxella catarrhalis/metabolismo , Mucina-5B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Humanos , Inflamação , Pulmão/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Mucosa Respiratória/microbiologia , Ácidos Siálicos/metabolismoRESUMO
OBJECTIVES: Ventilator-associated pneumonia (VAP) is difficult to diagnose using clinical criteria and no biomarkers have yet been proved to be sufficiently accurate. The use of the neutrophil-derived Heparin-binding protein (HBP) as a biomarker for pneumonia was investigated in this exploratory case-control study in two intensive care units at a tertiary referral hospital. METHODS: Patients with clinical signs of pneumonia were recruited and bronchoalveolar lavage fluid (BALF) or bronchial wash (BW) samples were collected. Mechanically ventilated and lung healthy subjects were recruited as controls. HBP was measured with enzyme-linked immunosorbent assay. RESULTS: BALF was collected from 14 patients with pneumonia and 14 healthy controls. Median HBP in BALF pneumonia samples was 14,690 ng/ml and controls 16.2 ng/ml (p < 0.0001). BW was collected from 10 pneumonia patients and 10 mechanically ventilated controls. Median HBP in BW pneumonia was 9002 ng/ml and controls 7.6 ng/ml (p < 0.0001). CONCLUSIONS: These data indicate that HBP concentrations is significantly higher in lower airway samples from patients with pneumonia than control subjects and is a potentially useful biomarker for diagnosis of VAP.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Líquido da Lavagem Broncoalveolar/química , Pulmão/metabolismo , Pneumonia Associada à Ventilação Mecânica/metabolismo , Respiração Artificial/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease with high morbidity and mortality. The IL-36 family are proinflammatory cytokines that are known to shape innate immune responses, including those critical to bacterial pneumonia. The objective of this study was to determine whether IL-36 cytokines promote a proinflammatory milieu in the lungs of long-term smokers with and without COPD. Concentrations of IL-36 cytokines were measured in plasma and BAL fluid from subjects in a pilot study (n = 23) of long-term smokers with and without COPD in vivo and from a variety of lung cells (from 3-5 donors) stimulated with bacteria or cigarette smoke components in vitro. Pulmonary macrophages were stimulated with IL-36 cytokines in vitro, and chemokine and cytokine production was assessed. IL-36α and IL-36γ are produced to varying degrees in murine and human lung cells in response to bacterial stimuli and cigarette smoke components in vitro. Moreover, whereas IL-36γ production is upregulated early after cigarette smoke stimulation and wanes over time, IL-36α production requires a longer duration of exposure. IL-36α and IL-36γ are enhanced systemically and locally in long-term smokers with and without COPD, and local IL-36α concentrations display a positive correlation with declining ventilatory lung function and increasing proinflammatory cytokine concentrations. In vitro, IL-36α and IL-36γ induce proinflammatory chemokines and cytokines in a concentration-dependent fashion that requires IL-36R and MyD88. IL-36 cytokine production is altered in long-term smokers with and without COPD and contributes to shaping a proinflammatory milieu in the lungs.
Assuntos
Citocinas/imunologia , Interleucina-1/imunologia , Pulmão/imunologia , Pneumonia/imunologia , Fumar/imunologia , Adulto , Idoso , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/imunologia , FumantesRESUMO
There is incomplete mechanistic understanding of the mobilization of neutrophils in the systemic and local compartment in smokers with chronic obstructive pulmonary disease (COPD). In this pilot study, we characterized how the adhesion molecules CD11b and CD62L, surface markers indicative of priming, are altered as neutrophils extravasate, and whether surface density of CD11b and CD62L differs between long-term tobacco smokers (LTS) with and without COPD compared with healthy never-smokers (HNS). Unstimulated blood neutrophils from LTS with (n = 5) and without (n = 9) COPD displayed lower surface density of CD62L compared with HNS (n = 8). In addition, surface density of CD11b was higher in bronchoalveolar lavage (BAL) neutrophils from LTS without COPD compared with those with COPD and HNS. Moreover, in BAL neutrophils from all study groups, CD62L was lower compared with matched blood neutrophils. In addition, BAL neutrophils responded with a further decrease in CD62L to ex vivo TNF stimulation. Thus, neutrophils in the airway lumen display a higher state of priming than systemic neutrophils and bear the potential to be further primed by local cytokines even with no smoking or the presence of COPD, findings that may represent a universal host defense mechanism against local bacteria. Moreover, systemic neutrophils are primed in LTS regardless of COPD. Further studies in larger materials are warranted to determine whether the priming of neutrophils is protective against COPD or merely preceding it.
Assuntos
Antígeno CD11b/metabolismo , Selectina L/metabolismo , Neutrófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Sistema Respiratório/patologia , Adulto , Idoso , Circulação Sanguínea , Fumar Cigarros/efeitos adversos , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Regulação para CimaRESUMO
Rationale: The use of inhaled corticosteroids (ICS) is associated with increased pneumonia risk, but the risk of invasive pneumococcal disease (IPD) associated with ICS is not characterized.Objectives: The aim was to test the hypothesis that the use of ICS increases the risk of IPD.Methods: Cases were persons 20-65 years of age included in a Swedish national registry of invasive infection caused by Streptococcus pneumoniae classified as any IPD as well as the subset of IPD with pneumonia. The case index date was the day the infection was diagnosed. Six control subjects for each case (matched for sex, age, and region) were selected from the Swedish National Population Registry and were assigned the index date of their corresponding case. Current and past users of ICS were defined by the last prescriptions dispensed within 60 or 61-365 days of the index date. Nonusers were defined as those with no dispensed prescription the last 365 days. Current users were characterized by use of fluticasone or budesonide. We used conditional logistic analysis, including matching and covariates, to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of IPD, IPD with pneumonia, and IPD without pneumonia associated with current or past use of ICS.Results: Current use of ICS increased the risk for IPD and IPD with pneumonia (OR, 1.71; 95% CI, 1.39-2.10 and OR, 1.94; 95% CI, 1.53-2.47, respectively), but there was no statistical association between current use of ICS and IPD without pneumonia (OR, 1.18; 95% CI 0.78-1.80). Past use of ICS increased the risk for IPD and IPD with pneumonia but not for IPD without pneumonia. Among current ICS users, the odds for IPD were similar for budesonide (OR, 1.34; 95% CI, 1.14-1.57) and fluticasone (OR, 1.41; 95% CI, 1.04-1.90). Among current ICS users, the odds for IPD with pneumonia were slightly higher but of similar magnitude for both budesonide and for fluticasone.Conclusions: ICS use is associated with an increased risk of IPD and IPD with pneumonia. The risk is driven by IPD with pneumonia. We found similar risks for budesonide and fluticasone.
Assuntos
Infecções Pneumocócicas , Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Corticosteroides/efeitos adversos , Budesonida/efeitos adversos , Fluticasona/efeitos adversos , Humanos , Infecções Pneumocócicas/epidemiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológicoRESUMO
There is little information on mucins versus potential regulatory factors in the peripheral airway lumen of long-term smokers with (LTS+) and without (LTS-) chronic obstructive pulmonary disease (COPD). We explored these matters in bronchoalveolar lavage (BAL) samples from two study materials, both including LTS+ and LTS- with a very similar historic exposure to tobacco smoke, and healthy non-smokers (HNSs; n=4-20/group). Utilizing slot blot and immunodetection of processed (filtered and centrifuged), as well as unprocessed BAL samples from one of the materials, we compared the quantity and fraction of large complexes of mucins. All LTS displayed an enhanced (median) level of MUC5AC compared with HNS. LTS- displayed a higher level of large MUC5AC complexes than HNS while LTS+ displayed a similar trend. In all LTS, total MUC5AC correlated with blood leukocytes, BAL neutrophil elastase and net gelatinase activity. Large mucin complexes accounted for most MUC5B, without clear group differences. In all LTS, total MUC5B correlated with total MUC5AC and local bacteria. In the same groups, large MUC5B complexes correlated with serum cotinine. MUC1 was increased and correlated with BAL leukocytes in all LTS whereas MUC2 was very low and without clear group differences. Thus, the main part of MUC5AC and MUC5B is present as large complexes in the peripheral airway lumen and historic as well as current exposure to tobacco smoke emerge as potential regulatory factors, regardless of COPD per se. Bacteria, leukocytes and proteinases also constitute potential regulatory factors, of interest for future therapeutic strategies.
Assuntos
Pulmão/metabolismo , Mucina-5AC/metabolismo , Mucina-1/metabolismo , Complexos Multiproteicos/metabolismo , Fumantes , Fumar/metabolismo , Bactérias/crescimento & desenvolvimento , Lavagem Broncoalveolar , Difusão , Feminino , Gases/metabolismo , Humanos , Pulmão/microbiologia , Masculino , Viabilidade Microbiana , Mucina-2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fatores de TempoRESUMO
Arginine residues of the antimicrobial peptide LL-37 can be citrullinated by peptidyl arginine deiminases, which reduce the positive charge of the peptide. Notably, citrullinated LL-37 has not yet been detected in human samples. In addition, functional and biophysical properties of citrullinated LL-37 are not fully explored. The aim of this study was to detect citrullinated LL-37 in human bronchoalveolar lavage (BAL) fluid and to determine antibacterial and biophysical properties of citrullinated LL-37. BAL fluid was obtained from healthy human volunteers after intra-bronchial exposure to lipopolysaccharide. Synthetic peptides were used for bacterial killing assays, transmission electron microscopy, isothermal titration calorimetry, mass-spectrometry and circular dichroism. Using targeted proteomics, we were able to detect both native and citrullinated LL-37 in BAL fluid. The citrullinated peptide did not kill Escherichia coli nor lysed human red blood cells. Both peptides had similar α-helical secondary structures but citrullinated LL-37 was more stable at higher temperatures, as shown by circular dichroism. In conclusion, citrullinated LL-37 is present in the human airways and citrullination impaired bacterial killing, indicating that a net positive charge is important for antibacterial and membrane lysing effects. It is possible that citrullination serves as a homeostatic regulator of AMP-function by alteration of key functions.
Assuntos
Antibacterianos/farmacologia , Catelicidinas/farmacologia , Antibacterianos/análise , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos , Líquido da Lavagem Broncoalveolar/química , Catelicidinas/análise , Catelicidinas/química , Células Cultivadas , Citrulina/análogos & derivados , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Conformação Proteica em alfa-Hélice , Estabilidade ProteicaRESUMO
OBJECTIVES: Occupational exposures to metal fumes have been associated with increased pneumonia risk, but the risk of invasive pneumococcal disease (IPD) has not been characterised previously. METHODS: We studied 4438 cases aged 20-65 from a Swedish registry of invasive infection caused by Streptococcus pneumoniae. The case index date was the date the infection was diagnosed. Six controls for each case, matched for gender, age and region of residency, were selected from the Swedish population registry. Each control was assigned the index date of their corresponding case to define the study observation period. We linked cases and controls to the Swedish registries for socioeconomic status (SES), occupational history and hospital discharge. We applied a job-exposure matrix to characterise occupational exposures. We used conditional logistic analyses, adjusted for comorbidities and SES, to estimate the OR of IPD and the subgroup pneumonia-IPD, associated with selected occupations and exposures in the year preceding the index date. RESULTS: Welders manifested increased risk of IPD (OR 2.99, 95% CI 2.09 to 4.30). Occupational exposures to fumes and silica dust were associated with elevated odds of IPD (OR 1.11, 95% CI 1.01 to 1.21 and OR 1.33, 95% CI 1.11 to 1.58, respectively). Risk associated with IPD with pneumonia followed a similar pattern with the highest occupational odds observed among welders and among silica dust exposed. CONCLUSION: Work specifically as a welder, but also occupational exposures more broadly, increase the odds for IPD. Welders, and potentially others with relevant exposures, should be offered pneumococcal vaccination.
Assuntos
Poeira , Gases , Exposição Ocupacional/efeitos adversos , Infecções Pneumocócicas/etiologia , Pneumonia/etiologia , Dióxido de Silício , Soldagem , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/etiologia , Doenças Profissionais/microbiologia , Razão de Chances , Infecções Pneumocócicas/microbiologia , Pneumonia/microbiologia , Sistema de Registros , Fatores de Risco , Streptococcus pneumoniae/crescimento & desenvolvimento , Suécia , Adulto JovemRESUMO
Pathogens causing pneumonia utilize the complement regulator vitronectin to evade complement-mediated killing. Although vitronectin is associated with several chronic lung diseases, the role of bronchoalveolar vitronectin in pneumonia has not been studied. This study sought to reveal the involvement of vitronectin in the bronchoalveolar space during pneumonia, to assess the effect of outer membrane vesicles and endotoxin on vitronectin release, and to determine whether bacterial pathogens utilize pulmonary vitronectin for evasion. Vitronectin was analyzed in cell-free bronchoalveolar lavage fluid harvested from patients with pneumonia (n = 8) and from healthy volunteers after subsegmental endotoxin instillation (n = 13). Vitronectin binding by Pseudomonas aeruginosa and Haemophilus influenzae was analyzed, and subsequent complement evasion was assessed by serum challenge. The effects of outer membrane vesicles on vitronectin production in mouse lungs and human type II alveolar epithelial cells (A549) were determined. We detected increased vitronectin concentrations in lavage fluid during pneumonia (p = 0.0063) and after bronchial endotoxin challenge (p = 0.016). The capture of vitronectin by bacteria significantly reduced complement-mediated lysis. Following challenge with vesicles, vitronectin was detected in mouse bronchoalveolar space, and mouse alveolar epithelial cells in vivo as well as A549 cells in vitro contained increased levels of vitronectin. Taken together, outer membrane vesicles and endotoxin from Gram-negative bacteria induce vitronectin, which is released into the bronchoalveolar space, and used for evasion of complement-mediated clearance.
RESUMO
RATIONALE: The antimicrobial peptides (AMPs) LL-37 and calprotectin are important players in the innate immunity of human airways. In patients with diseases characterized by bacterial colonization, the airway concentrations of these AMPs are increased. Less is known about their presence and release patterns in healthy humans. Our aim was to determine whether LL-37 and calprotectin are released after the activation of the innate immune response in the peripheral airways. METHODS: Healthy volunteers underwent exposure to endotoxin and vehicle in contralateral segment bronchi. After 12 or 24 h, samples of bronchoalveolar lavage fluid (BALf) were collected bilaterally from exposed segments. Cell and AMP concentrations were assessed, as were the pro-form and active form of LL-37. RESULTS: Both LL-37 and calprotectin were detected in cell-free BALf from both endotoxin- and vehicle-exposed segments. The concentrations of precursor and active LL-37 and neutrophils were significantly higher in endotoxin-exposed segments after 12 and 24 h, and the concentrations of LL-37 and neutrophils correlated positively. The concentrations of calprotectin were not markedly affected by exposure to endotoxin. CONCLUSIONS: Local endotoxin exposure elicits the release and activation of LL-37 but not calprotectin in healthy human peripheral airways, suggesting an inducible involvement of LL-37 in the local innate immune response.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Brônquios/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Endotoxinas/imunologia , Complexo Antígeno L1 Leucocitário/metabolismo , Neutrófilos/imunologia , Sistema Respiratório/imunologia , Adulto , Exposição Ambiental/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Imunidade Inata , Masculino , Sistema Respiratório/microbiologia , Adulto Jovem , CatelicidinasRESUMO
BACKGROUND: Long-term exposure to tobacco smoke causes local inflammation in the airways that involves not only innate immune cells, including NK cells, but also adaptive immune cells such as cytotoxic (CD8+) and helper (CD4+) T-cells. We have previously demonstrated that long-term tobacco smoking increases extracellular concentration of the CD4+-recruiting cytokine interleukin (IL)-16 locally in the airways. Here, we hypothesized that tobacco smoking alters IL-16 biology at the systemic level and that this effect involves oxygen free radicals (OFR). METHODS: We quantified extracellular IL-16 protein (ELISA) and intracellular IL-16 in NK cells, T-cells, B-cells, and monocytes (flow cytometry) in blood samples from long-term tobacco smokers with and without chronic obstructive pulmonary disease (COPD) and in never-smokers. NK cells from healthy blood donors were stimulated with water-soluble tobacco smoke components (cigarette smoke extract) with or without an OFR scavenger (glutathione) in vitro and followed by quantification of IL-16 protein. RESULTS: The extracellular concentrations of IL-16 protein in blood did not display any substantial differences between groups. Notably, intracellular IL-16 protein was detected in all types of blood leukocytes. All long-term smokers displayed a decrease in this IL-16 among NK cells, irrespective of COPD status. Further, both NK and CD4+ T-cell concentrations displayed a negative correlation with pack-years. Moreover, cigarette smoke extract caused release of IL-16 protein from NK cells in vitro, and this was not affected by glutathione, in contrast to the decrease in intracellular IL-16, which was prevented by this drug. CONCLUSION: Long-term exposure to tobacco smoke does not markedly alter extracellular concentrations of IL-16 protein in blood. However, it does decrease the intracellular IL-16 concentrations in blood NK cells, the latter effect involving OFR. Thus, long-term tobacco smoking exerts an impact at the systemic level that involves NK cells; innate immune cells that are critical for host defense against viruses and tumors - conditions that are overrepresented among smokers.
Assuntos
Mediadores da Inflamação/sangue , Interleucina-16/sangue , Células Matadoras Naturais/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Antioxidantes/farmacologia , Linfócitos B/imunologia , Estudos de Casos e Controles , Separação Celular/métodos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Glutationa/farmacologia , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/etiologia , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Fumar/sangue , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Fatores de TempoRESUMO
There is excessive accumulation of neutrophils in the airways in chronic obstructive pulmonary disease (COPD) but the underlying mechanisms remain poorly understood. It is known that extracellular cytokine signaling via interleukin (IL)-17A contributes to neutrophil accumulation in the airways but nothing is known about the impact of tobacco smoking on extracellular signaling via IL-17A. Here, we characterized the impact of tobacco smoking on extracellular cytokine signaling via IL-17A in the peripheral airways in long-term smokers with and without COPD and in occasional smokers before and after short-term exposure to tobacco smoke. We quantified concentrations of IL-17A protein in cell-free bronchoalveolar lavage (BAL) fluid samples (Immuno-quantitative PCR) and cytotoxic T-cells (immunoreactivity for CD8+ and CD3+) in bronchial biopsies. Matrix metalloproteinase-8 and human beta defensin 2 proteins were also quantified (enzyme-linked immunosorbent assay) in the BAL samples. The concentrations of IL-17A in BAL fluid were higher in long-term smokers without COPD compared with nonsmoking healthy controls, whereas those with COPD did not differ significantly from either of the other groups. Short-term exposure to tobacco smoke did not induce sustained alterations in these concentrations in occasional smokers. Long-term smokers displayed higher concentrations of IL-17A than did occasional smokers. Moreover, these concentrations correlated with CD8+ and CD3+ cells in biopsies among long-term smokers with COPD. In healthy nonsmokers, BAL concentrations of matrix metalloproteinase-8 and IL-17A correlated, whereas this was not the case in the pooled group of long-term smokers with and without COPD. In contrast, BAL concentrations of human beta defensin 2 and IL-17A correlated in all study groups. This study implies that long-term but not short-term exposure to tobacco smoke increases extracellular cytokine signaling via IL-17A in the peripheral airways. In the smokers with COPD, this signaling may involve cytotoxic T-cells. Long-term exposure to tobacco smoke leads to a disturbed association of extracellular IL-17A signaling and matrix metalloproteinase-8, of potential importance for the coordination of antibacterial activity.
RESUMO
We examined whether systemic cytokine signaling via interleukin (IL)-17 and growth-related oncogene-α (GRO-α) is impaired in smokers with obstructive pulmonary disease including chronic bronchitis (OPD-CB). We also examined how this systemic cytokine signaling relates to bacterial colonization in the airways of the smokers with OPD-CB. Currently smoking OPD-CB patients (n=60, corresponding to Global initiative for chronic Obstructive Lung Disease [GOLD] stage I-IV) underwent recurrent blood and sputum sampling over 60 weeks, during stable conditions and at exacerbations. We characterized cytokine protein concentrations in blood and bacterial growth in sputum. Asymptomatic smokers (n=10) and never-smokers (n=10) were included as control groups. During stable clinical conditions, the protein concentrations of IL-17 and GRO-α were markedly lower among OPD-CB patients compared with never-smoker controls, whereas the asymptomatic smoker controls displayed intermediate concentrations. Notably, among OPD-CB patients, colonization by opportunistic pathogens was associated with markedly lower IL-17 and GRO-α, compared with colonization by common respiratory pathogens or oropharyngeal flora. During exacerbations in the OPD-CB patients, GRO-α and neutrophil concentrations were increased, whereas protein concentrations and messenger RNA for IL-17 were not detectable in a reproducible manner. In smokers with OPD-CB, systemic cytokine signaling via IL-17 and GRO-α is impaired and this alteration may be linked to colonization by opportunistic pathogens in the airways. Given the potential pathogenic and therapeutic implications, these findings deserve to be validated in new and larger patient cohorts.
Assuntos
Mediadores da Inflamação/sangue , Interleucina-17/sangue , Pulmão/microbiologia , Infecções Oportunistas/sangue , Pneumonia/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Infecções Respiratórias/sangue , Fumar/sangue , Escarro/microbiologia , Adulto , Idoso , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Quimiocina CXCL1/sangue , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Pulmão/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Infecções Oportunistas/diagnóstico , Infecções Oportunistas/imunologia , Infecções Oportunistas/microbiologia , Pneumonia/diagnóstico , Pneumonia/imunologia , Pneumonia/microbiologia , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Fumar/efeitos adversos , Fumar/imunologia , Fatores de TempoRESUMO
RATIONALE: The role of the presumed Th17 cytokine IL-26 in antibacterial host defense of the lungs is not known. OBJECTIVES: To characterize the role of IL-26 in antibacterial host defense of human lungs. METHODS: Intrabronchial exposure of healthy volunteers to endotoxin and vehicle was performed during bronchoscopy and bronchoalveolar lavage (BAL) samples were harvested. Intracellular IL-26 was detected using immunocytochemistry and immunocytofluorescence. This IL-26 was also detected using flow cytometry, as was its receptor complex. Cytokines and phosphorylated signal transducer and activator of transcription (STAT) 1 plus STAT3 were quantified using ELISA. Gene expression was analyzed by real-time polymerase chain reaction and neutrophil migration was assessed in vitro. MEASUREMENTS AND MAIN RESULTS: Extracellular IL-26 was detected in BAL samples without prior exposure in vivo and was markedly increased after endotoxin exposure. Alveolar macrophages displayed gene expression for, contained, and released IL-26. Th and cytotoxic T cells also contained IL-26. In the BAL samples, IL-26 concentrations and innate effector cells displayed a correlation. Recombinant IL-26 potentiated neutrophil chemotaxis induced by IL-8 and fMLP but decreased chemokinesis for neutrophils. Myeloperoxidase in conditioned media from neutrophils was decreased. The IL-26 receptor complex was detected in neutrophils and IL-26 decreased phosphorylated STAT3 in these cells. In BAL and bronchial epithelial cells, IL-26 increased gene expression of the IL-26 receptor complex and STAT1 plus STAT3. Finally, IL-26 increased the release of neutrophil-mobilizing cytokines in BAL but not in epithelial cells. CONCLUSIONS: This study implies that alveolar macrophages produce IL-26, which stimulates receptors on neutrophils and focuses their mobilization toward bacteria and accumulated immune cells in human lungs.
Assuntos
Imunidade Inata , Interleucinas/fisiologia , Pulmão/imunologia , Macrófagos Alveolares/fisiologia , Neutrófilos/fisiologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , HumanosRESUMO
We tested the hypothesis that activation of the innate immune response induces an imbalance in the proteolytic homeostasis in the peripheral airways of healthy subjects, towards excess serine or gelatinase proteinase activity. During bronchoscopy, 18 healthy human subjects underwent intra-bronchial exposure to endotoxin and contra-lateral exposure to vehicle. Bronchoalveolar lavage (BAL) samples were harvested 24 or 48 hours (h) later. We quantified archetype proteinases, anti-proteinases, inflammatory BAL cells, and, importantly, total plus net proteinase activities using functional substrate assays. As expected, endotoxin exposure increased the concentrations of polymorphonuclear leukocytes (PMN's) and macrophages, of proteinases and the anti-proteinases tissue inhibitor of metalloproteinase-1, α-1-antitrypsin and, to a lesser extent, secretory leukoproteinase inhibitor, at both time points. Notably, at these time points, endotoxin exposure substantially increased the quantitative NE/SLPI ratio and the net serine proteinase activity corresponding to neutrophil elastase (NE). Endotoxin exposure also increased the total gelatinase activity corresponding to matrix metalloproteinase (MMP)-9; an activity dominating over that of MMP-2. However, endotoxin exposure had no impact on net gelatinolytic activity at 24 or 48 h after exposure. Thus, local activation of the innate immune response induces an imbalance towards increased net serine proteinase activity in the proteolytic homeostasis of the peripheral airways in healthy subjects. Hypothetically, this serine proteinase activity can contribute to tissue remodelling and hypersecretion via NE from PMN's, if it is triggered repeatedly, as might be the case in chronic inflammatory airway disorders.
Assuntos
Endotoxinas/farmacologia , Gelatinases/metabolismo , Pulmão/enzimologia , Serina Proteases/metabolismo , Adulto , Líquido da Lavagem Broncoalveolar , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células , Feminino , Gelatinases/antagonistas & inibidores , Voluntários Saudáveis , Humanos , Imuno-Histoquímica , Inflamação/patologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteólise/efeitos dos fármacos , Solubilidade , Adulto JovemRESUMO
OBJECTIVES: There are epidemiological studies indicating that exposure to metal fumes is a risk factor for infectious pneumonia. Whether occupational exposure to other agents, such as inorganic dust or chemicals, also increases the risk for infectious pneumonia is not clear. The aim of the present study was to elucidate whether occupational exposure to respiratory pollutants and irritants increases the risk for infectious pneumonia. DESIGN: Prospective cohort study. Setting Swedish male construction workers. Participants 320,143 male construction workers exposed to inorganic dust (asbestos, man-made mineral fibres, dust from cement, concrete and quartz), wood dust, metal fumes and chemicals (organic solvents, diisocyanates and epoxi resins) or unexposed. Main outcome measures The cohort was followed from 1971 to 2003 and the main outcome measures were mortality to infectious pneumonia, lobar pneumonia or pneumococcal pneumonia. RRs were obtained by the person-years method and from Poisson regression models, adjusting for baseline values of age and smoking habits. RESULTS: Among men aged 20-64 years there was increased mortality from infectious pneumonias among construction workers exposed to metal fumes (RR 2.31, 95% CI 1.35 to 3.95), inorganic dust (RR 1.87, 95% CI 1.22 to 2.87) and chemicals (RR 1.91, 95% CI 1.37 to 3.22). The mortality was also increased from both lobar pneumonia and pneumococcal pneumonia. Among men aged 65-84 years the occupational exposure to inorganic dust and chemicals was associated with slightly increased mortality from infectious pneumonia. Among groups with mutually exclusive exposures there was increased mortality from infectious pneumonias among construction workers exposed to inorganic dust, but not among those exposed to wood dust or chemicals. There were no cases among workers exposed only to metal fumes. CONCLUSIONS: Our findings indicate that exposure to inorganic dust increases the mortality from infectious pneumonias, especially lobar pneumonia and pneumococcal pneumonia. The mechanism is unclear, but the effect may be mediated through induced airways inflammation.