RESUMO
Trypanosomatid flagellates have not been studied in Austria in any detail. In this study, specific nested PCR, targeted on the ribosomal small subunit, was used to determine the occurrence and diversity of trypanosomatids in wild-caught mosquitoes sampled across Eastern Austria in the years 2014-2015. We collected a total of 29,975 mosquitoes of 19 species divided in 1680 pools. Of these, 298 (17.7%), representing 12 different mosquito species, were positive for trypanosomatid DNA. In total, seven trypanosomatid spp. were identified (three Trypanosoma, three Crithidia and one Herpetomonas species), with the highest parasite species diversity found in the mosquito host Coquillettidia richiardii. The most frequent parasite species belonged to the mammalian Trypanosoma theileri/cervi species complex (found in 105 pools; 6.3%). The avian species T. culicavium (found in 69 pools; 4.1%) was only detected in mosquitoes of the genus Culex, which corresponds to their preference for avian hosts. Monoxenous trypanosomatids of the genus Crithidia and Herpetomonas were found in 20 (1.3%) mosquito pools. One third (n = 98) of the trypanosomatid positive mosquito pools carried more than one parasite species. This is the first large scale study of trypanosomatid parasites in Austrian mosquitoes and our results are valuable in providing an overview of the diversity of these parasites in Austria.
Assuntos
Culicidae/parasitologia , Trypanosoma/classificação , Animais , Áustria , Biodiversidade , DNA de Protozoário , DNA Ribossômico , Filogenia , Análise de Sequência de DNA , Trypanosoma/genética , Tripanossomíase/parasitologia , Tripanossomíase/transmissãoRESUMO
BACKGROUND: Although avian trypanosomes are widespread parasites, the knowledge of their vectors is still incomplete. Despite biting midges (Diptera: Ceratopogonidae) are considered as potential vectors of avian trypanosomes, their role in transmission has not been satisfactorily elucidated. Our aim was to clarify the potential of biting midges to sustain the development of avian trypanosomes by testing their susceptibility to different strains of avian trypanosomes experimentally. Moreover, we screened biting midges for natural infections in the wild. RESULTS: Laboratory-bred biting midges Culicoides nubeculosus were highly susceptible to trypanosomes from the Trypanosoma bennetti and T. avium clades. Infection rates reached 100%, heavy infections developed in 55-87% of blood-fed females. Parasite stages from the insect gut were infective for birds. Moreover, midges could be infected after feeding on a trypanosome-positive bird. Avian trypanosomes can thus complete their cycle in birds and biting midges. Furthermore, we succeeded to find infected blood meal-free biting midges in the wild. CONCLUSIONS: Biting midges are probable vectors of avian trypanosomes belonging to T. bennetti group. Midges are highly susceptible to artificial infections, can be infected after feeding on birds, and T. bennetti-infected biting midges (Culicoides spp.) have been found in nature. Moreover, midges can be used as model hosts producing metacyclic avian trypanosome stages infective for avian hosts.
Assuntos
Doenças das Aves/transmissão , Aves/parasitologia , Ceratopogonidae/parasitologia , Insetos Vetores/parasitologia , Tripanossomíase/veterinária , Animais , Doenças das Aves/parasitologia , Canários/parasitologia , Ceratopogonidae/anatomia & histologia , Trato Gastrointestinal/parasitologia , Especificidade de Hospedeiro , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase , Trypanosoma/classificação , Trypanosoma/genética , Trypanosoma/fisiologia , Trypanosoma/ultraestrutura , Tripanossomíase/diagnóstico , Tripanossomíase/parasitologia , Tripanossomíase/transmissãoRESUMO
In the light of the emergence of bluetongue and Schmallenberg viruses in northern and central Europe, an extensive entomological survey within the framework of a bluetongue control program was undertaken from 2008 to 2013 in the Czech Republic to investigate Culicoides biting midges (Diptera: Ceratopogonidae) collected in close proximity of domestic livestock and semiwild ruminants. Insects were sampled using CDC black-light suction traps placed overnight near ruminants in farms or in forest game preserves to provide data on Culicoides fauna collected near these two groups of hosts inhabiting different environments. From almost a half million biting midge specimens collected at 41 sampling sites, 34 species were identified including three species newly recorded for the Czech Republic: Culicoides (Oecacta) clastrieri Callot, Kremer & Deduit, Culicoides (Oecacta) odiatus Austen, and Culicoides (Pontoculicoides) saevus Kieffer. The Culicoides obsoletus species group, incriminated as a bluetongue virus vector, was predominant in both domestic livestock (91%) and semiwild game (52%). A relatively high proportion (around 30%) of C. obsoletus Meigen females with pigmented abdomen (= more likely parous) was observed from spring till autumn. In contrast, adult biting midges were found to be largely absent during at least three winter months, approximately December till March, which could be considered as the biting midge vector-free period.
Assuntos
Ceratopogonidae , Insetos Vetores , Ruminantes , Animais , Bovinos , República Tcheca , Feminino , Gado , Dinâmica Populacional , Estações do AnoRESUMO
Biting midges of the genus Culicoides transmit pathogens of veterinary importance such as bluetongue virus (Reoviridae: Orbivirus). The saliva of Culicoides is known to contain bioactive molecules including peptides and proteins with vasodilatory and immunomodulative properties. In this study, we detected activity of enzyme hyaluronidase in six Culicoides species that commonly occur in Europe and that are putative vectors of arboviruses. Hyaluronidase was present in all species studied, although its molecular size, sensitivity to SDS, and substrate specificity differed between species. Further studies on the potential effect of hyaluronidase activity on the vector competence of Culicoides species for arboviruses would be beneficial.
Assuntos
Ceratopogonidae/enzimologia , Hialuronoglucosaminidase/metabolismo , Insetos Vetores/enzimologia , Animais , Infecções por Arbovirus/transmissão , Saliva/enzimologiaRESUMO
Tsetse and tabanid flies transmit several Trypanosoma species, some of which are human and livestock pathogens of major medical and socioeconomic impact in Africa. Recent advances in molecular techniques and phylogenetic analyses have revealed a growing diversity of previously unidentified tsetse-transmitted trypanosomes potentially pathogenic to livestock and/or other domestic animals as well as wildlife, including African great apes. To map the distribution, prevalence and co-occurrence of known and novel trypanosome species, we analyzed tsetse and tabanid flies collected in the primary forested part of the Dzanga-Sangha Protected Areas, Central African Republic, which hosts a broad spectrum of wildlife including primates and is virtually devoid of domestic animals. Altogether, 564 tsetse flies and 81 tabanid flies were individually screened for the presence of trypanosomes using 18S rRNA-specific nested PCR. Herein, we demonstrate that wildlife animals are parasitized by a surprisingly wide range of trypanosome species that in some cases may circulate via these insect vectors. While one-third of the examined tsetse flies harbored trypanosomes either from the Trypanosoma theileri, Trypanosoma congolense or Trypanosoma simiae complex, or one of the three new members of the genus Trypanosoma (strains 'Bai', 'Ngbanda' and 'Didon'), more than half of the tabanid flies exclusively carried T. theileri. To establish the putative vertebrate hosts of the novel trypanosome species, we further analyzed the provenance of blood meals of tsetse flies. DNA individually isolated from 1033 specimens of Glossina spp. and subjected to high-throughput library-based screening proved that most of the examined tsetse flies engorged on wild ruminants (buffalo, sitatunga, bongo), humans and suids. Moreover, they also fed (albeit more rarely) on other vertebrates, thus providing indirect but convincing evidence that trypanosomes can be transmitted via these vectors among a wide range of warm- and cold-blooded hosts.
Assuntos
Dípteros/parasitologia , Ecossistema , Insetos Vetores , Trypanosoma/classificação , Trypanosoma/isolamento & purificação , Moscas Tsé-Tsé/parasitologia , Animais , República Centro-Africana , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dípteros/classificação , Dípteros/crescimento & desenvolvimento , Feminino , Hominidae/crescimento & desenvolvimento , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Trypanosoma/genética , Moscas Tsé-Tsé/crescimento & desenvolvimentoRESUMO
African great apes are susceptible to infections with several species of Plasmodium, including the predecessor of Plasmodium falciparum. Little is known about the ecology of these pathogens in gorillas. A total of 131 gorilla fecal samples were collected from Dzanga-Sangha Protected Areas to study the diversity and prevalence of Plasmodium species. The effects of sex and age as factors influencing levels of infection with Plasmodium in habituated gorilla groups were assessed. Ninety-five human blood samples from the same locality were also analysed to test for cross-transmission between humans and gorillas. According to a cytB PCR assay 32% of gorilla's fecal samples and 43·1% human individuals were infected with Plasmodium spp. All Laverania species, Plasmodium vivax, and for the first time Plasmodium ovale were identified from gorilla samples. Plasmodium praefalciparum was present only from habituated individuals and P. falciparum was detected from human samples. Although few P. vivax and P. ovale sequences were obtained from gorillas, the evidence for cross-species transmission between humans and gorillas requires more in depth analysis. No association was found between malaria infection and sex, however, younger individuals aged ≤6 years were more susceptible. Switching between two different Plasmodium spp. was observed in three individuals. Prolonged monitoring of Plasmodium infection during various seasons and recording behavioural data is necessary to draw a precise picture about the infection dynamics.
Assuntos
Doenças dos Símios Antropoides/epidemiologia , Gorilla gorilla/parasitologia , Malária Falciparum/veterinária , Malária Vivax/veterinária , Malária/veterinária , Plasmodium falciparum/genética , Plasmodium ovale/genética , Plasmodium vivax/genética , Animais , Doenças dos Símios Antropoides/parasitologia , Doenças dos Símios Antropoides/transmissão , República Centro-Africana/epidemiologia , Conservação dos Recursos Naturais , Citocromos b/genética , Ecossistema , Fezes/parasitologia , Feminino , Humanos , Malária/epidemiologia , Malária/parasitologia , Malária/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Vivax/transmissão , Masculino , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Plasmodium ovale/classificação , Plasmodium ovale/isolamento & purificação , Plasmodium vivax/classificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da PolimeraseRESUMO
This study presents data from a molecular survey of the species of the genus Culicoides from the region of Kalimok Field Station (NE Bulgaria) and haemosporidian parasites occurring in them in order to investigate the host-parasite specificity of haemosporidians to their dipteran vectors. The identification of Culicoides spp. was carried out by morphological and molecular-genetic methods. We collected and analysed 230 individuals of the genus Culicoides. Nine species were found. Eight species were identified morphologically; Culicoides obsoletus, C. riethi, C. newsteadi, C. circumscriptus, C. festivipennis, C. punctatus, C. pictipennis and C. puncticollis. The ninth species might be classified as either of C. nubeculosus or C. riethi and its identification needs additional investigations. The total prevalence of Haemoproteus in the examined biting midges was 2.17%. Three individuals of C. pictipennis were infected with the Haemoproteus lineage TURDUS2 (prevalence 16.67%), a common parasite of thrushes (Turdidae). Two individuals of C. circumscriptus contained Haemoproteus lineages (prevalence 2.78%); these were the lineage HAWF2 (previously reported from Coccothraustes coccothraustes) and a new lineage CULCIR1 not previously reported in the literature.
Assuntos
Ceratopogonidae/crescimento & desenvolvimento , Ceratopogonidae/parasitologia , Ectoparasitoses/epidemiologia , Haemosporida/isolamento & purificação , Passeriformes/parasitologia , Animais , Doenças das Aves/parasitologia , Doenças das Aves/transmissão , Bulgária , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/classificação , Ectoparasitoses/parasitologia , Infecções por Protozoários/transmissãoRESUMO
Mosquito feeding behavior determines the degree of vector-host contact and may have a serious impact on the risk of pathogen transmission, including that of the West Nile virus (WNV). To measure the role of Culex mosquitoes as WNV vectors, host-seeking females were collected using animal-baited traps containing live birds (quail) or mammals (rabbits) and CO2-baited Center for Disease Control and Prevention traps placed in several wetland areas in the Czech Republic. Culex pipiens (L.) and Culex modestus (F.) were the most frequently collected species. Although Cx. modestus did not distinguish between baits, Cx. pipiens was collected significantly more frequently in bird-baited traps. Based on mitochondrial DNA analysis of bloodmeals from engorged females collected by CO2-baited traps situated within reed beds, a diverse group of birds were the predominant hosts (93.7%), followed by mammals (4.2%) including humans, and amphibians (2.1%). Among birds, Anseriformes were fed upon most frequently by Cx. modestus, whereas Cx. pipiens fed most frequently on Passeriformes. To measure the infection risk and confirm the distribution of mosquito species in various biotopes, transects of CO2-baited CDC traps were operated from wetland reed beds into upland vegetated areas. Even though both Culex species occurred in all biotopes sampled and frequently dispersed hundreds of meters away from fishpond shore vegetation, the spatial distribution of Cx. modestus was significantly associated with reed beds at wetlands. The first detection of WNV (subtype RabV) in Cx. modestus in Bohemia and confirmation of WNV presence in Cx. pipiens in Moravia together with observed feeding behavior supports the presumed role of both Culex species in the avian-to-avian enzootic WNV cycle and in avian-to-mammal transmission in the Czech Republic.
Assuntos
Culex/fisiologia , Culex/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/isolamento & purificação , Anfíbios/fisiologia , Distribuição Animal , Animais , Aves/fisiologia , República Tcheca , Comportamento Alimentar , Feminino , Humanos , Mamíferos/fisiologia , Especificidade da Espécie , Vírus do Nilo Ocidental/fisiologia , Áreas AlagadasRESUMO
A new species, Culicoides paradoxalis Ramilo and Delécolle (Diptera: Ceratopogonidae), is described from specimens collected in France (Corsica and southeast region) and Portugal. This species resembles Culicoides lupicaris Downes and Kettle, and can be distinguished from this species and from Culicoides newsteadi Austen by its wing pattern, in addition to the absence of spines on the tarsomere 4 of female mid leg. In male, the presence of two appendices on the sternite 9 together with the absence of sensilla coeloconica on the flagellomere 11 is also useful to distinguish these three species. Separation from other members of the Culicoides subgenus is confirmed by the analysis of the Cytochrome Oxidase I (COI) mitochondrial marker.
Assuntos
Ceratopogonidae/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Animais , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/genética , Ecossistema , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , PortugalRESUMO
A novel avian trypanosome, Trypanosoma culicavium sp. nov., isolated from Culex mosquitoes, is described on the basis of naturally and experimentally infected vectors and bird hosts, localization in the vector, morphological characters and molecular data. This study provides the first comprehensive description of a trypanosome species transmitted by mosquitoes, in which parasites form plugs and rosettes on the stomodeal valve. Trypanosomes occurred as long epimastigotes and short trypomastigotes in vectors and culture and as long trypomastigotes in birds. Transmission of parasites to bird hosts was achieved exclusively by ingestion of experimentally infected Culex mosquito females by canaries (Serinus canaria), but not by Japanese quails (Coturnix japonica), nor by the bite of infected vectors, nor by ingestion of parasites from laboratory cultures. Transmission experiments and the identity of isolates from collared flycatchers (Ficedula albicollis) and Culex mosquitoes suggests that the natural hosts of T. culicavium are insectivorous songbirds (Passeriformes). Phylogenetic analyses of small-subunit rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase gene sequences demonstrated that T. culicavium sp. nov. is more related to Trypanosoma corvi than to other avian trypanosomes (e.g. Trypanosoma avium and Trypanosoma bennetti).
Assuntos
Aves/parasitologia , Culex/parasitologia , Trypanosoma/classificação , Trypanosoma/isolamento & purificação , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Microscopia , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Trypanosoma/genética , Trypanosoma/patogenicidadeRESUMO
Mosquito faunal studies were carried out in five separate wetland regions in the Czech Republic during 2004-2007, sampling with dry ice-baited and sentinel host-baited CDC traps. A total of 79,245 adults was identified, representing 23 mosquito species that belonged to the genera Anopheles, Culiseta, Coquillettidia, Aedes, and Culex. Our findings reveal that the mosquito fauna is enriched by new elements in the Mediterranean region. Historical and CDC trap data suggest that the newly-emerging potential malaria vector, Anopheles hyrcanus, has reached the northern limit of its distribution in the Czech Republic, and the important West Nile virus (WNV) vector, Culex modestus, has widened its distribution in the Czech Republic. No significant differences were observed in a total number of mosquitoes collected by traps baited with either the sentinel animals or with CO2, although species abundance differed. A relatively higher proportion of Cx. modestus was collected in the sentinel-baited traps, while the proportion of Cx. pipiens was higher in the CO2-baited traps.
Assuntos
Anopheles/fisiologia , Culex/fisiologia , Insetos Vetores/fisiologia , Malária/transmissão , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia , Animais , República Tcheca , Demografia , Insetos Vetores/virologia , Fatores de Tempo , Áreas AlagadasRESUMO
Using green fluorescent protein as a reporter, we have shown that the strain 29-13 of Trypanosoma brucei, widely used for inducible down-regulation of mRNA, is inducible in, but not permissive for the tsetse flies Glossina palpalis gambiensis and Glossina morsitans morsitans. Within two weeks post-infection, 42% males and females of teneral and non-teneral tsetse flies harboured intestinal infections, yet not a single infection progressed into the salivary glands.