Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
ArXiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37426456

RESUMO

Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers or fixed k-mers to aggregate meaningful DNA units, losing single nucleotide resolution where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyena's new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level - an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 18 datasets using a model with orders of magnitude less parameters and pretraining data. On the GenomicBenchmarks, HyenaDNA surpasses SotA on 7 of 8 datasets on average by +10 accuracy points. Code at https://github.com/HazyResearch/hyena-dna.

2.
BMC Bioinformatics ; 21(1): 217, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460703

RESUMO

BACKGROUND: Enzymatic and chemical reactions are key for understanding biological processes in cells. Curated databases of chemical reactions exist but these databases struggle to keep up with the exponential growth of the biomedical literature. Conventional text mining pipelines provide tools to automatically extract entities and relationships from the scientific literature, and partially replace expert curation, but such machine learning frameworks often require a large amount of labeled training data and thus lack scalability for both larger document corpora and new relationship types. RESULTS: We developed an application of Snorkel, a weakly supervised learning framework, for extracting chemical reaction relationships from biomedical literature abstracts. For this work, we defined a chemical reaction relationship as the transformation of chemical A to chemical B. We built and evaluated our system on small annotated sets of chemical reaction relationships from two corpora: curated bacteria-related abstracts from the MetaCyc database (MetaCyc_Corpus) and a more general set of abstracts annotated with MeSH (Medical Subject Headings) term Bacteria (Bacteria_Corpus; a superset of MetaCyc_Corpus). For the MetaCyc_Corpus, we obtained 84% precision and 41% recall (55% F1 score). Extending to the more general Bacteria_Corpus decreased precision to 62% with only a four-point drop in recall to 37% (46% F1 score). Overall, the Bacteria_Corpus contained two orders of magnitude more candidate chemical reaction relationships (nine million candidates vs 68,0000 candidates) and had a larger class imbalance (2.5% positives vs 5% positives) as compared to the MetaCyc_Corpus. In total, we extracted 6871 chemical reaction relationships from nine million candidates in the Bacteria_Corpus. CONCLUSIONS: With this work, we built a database of chemical reaction relationships from almost 900,000 scientific abstracts without a large training set of labeled annotations. Further, we showed the generalizability of our initial application built on MetaCyc documents enriched with chemical reactions to a general set of articles related to bacteria.


Assuntos
Mineração de Dados/métodos , Bactérias/metabolismo , Fenômenos Bioquímicos , Bases de Dados Factuais , Humanos , Aprendizado de Máquina , Publicações , Software
3.
Artigo em Inglês | MEDLINE | ID: mdl-31777414

RESUMO

Labeling training data is one of the most costly bottlenecks in developing machine learning-based applications. We present a first-of-its-kind study showing how existing knowledge resources from across an organization can be used as weak supervision in order to bring development time and cost down by an order of magnitude, and introduce Snorkel DryBell, a new weak supervision management system for this setting. Snorkel DryBell builds on the Snorkel framework, extending it in three critical aspects: flexible, template-based ingestion of diverse organizational knowledge, cross-feature production serving, and scalable, sampling-free execution. On three classification tasks at Google, we find that Snorkel DryBell creates classifiers of comparable quality to ones trained with tens of thousands of hand-labeled examples, converts non-servable organizational resources to servable models for an average 52% performance improvement, and executes over millions of data points in tens of minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA