Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 46(20): 5264-5267, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653168

RESUMO

We report on the nonlinear temporal compression of mJ energy pulses from a Ti:Sa chirped pulse amplifier system in a multipass cell filled with argon. The pulses are compressed from 30 fs down to 5.3 fs, corresponding to two optical cycles. The post-compressed beam exhibits excellent spatial quality and homogeneity. These results provide guidelines for optimizing the compressed pulse quality and further scaling of multipass-cell-based post-compression down to the single-cycle regime.

2.
Opt Lett ; 32(3): 310-2, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17215955

RESUMO

We present and characterize a very efficient optical device that employs the plasma mirror technique to increase the contrast of high-power laser systems. Contrast improvements higher than 10(4) with 50% transmission are shown to be routinely achieved on a typical 10 TW laser system when the pulse is reflected on two consecutive plasma mirrors. Used at the end of the laser system, this double plasma mirror preserves the spatial profile of the initial beam, is unaffected by shot-to-shot fluctuations, and is suitable for most high peak power laser systems. We use the generation of high-order harmonics as an effective test for the contrast improvement produced by the double plasma mirrors.

3.
Opt Lett ; 29(8): 893-5, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15119413

RESUMO

We demonstrate the use of a plasma mirror to obtain 60-fs 10-TW laser pulses with a temporal contrast of 10(8) on a nanosecond time scale and 10(6) on a picosecond time scale, and we use these high-contrast pulses to generate high harmonics by nonlinear reflection on a plasma with a steep electronic density gradient. Well-collimated harmonics up to 20th order are observed for a laser intensity of approximately equal to 3 x 10(17) W/cm2, whereas no harmonics are obtained without the plasma mirror.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA