Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(1): 300-331, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613336

RESUMO

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Assuntos
Aclimatação , Arabidopsis , Resposta ao Choque Térmico , Plântula , Arabidopsis/fisiologia , Arabidopsis/genética , Plântula/fisiologia , Plântula/genética , Resposta ao Choque Térmico/fisiologia , Metabolismo Energético , Termotolerância/fisiologia , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Mitocôndrias/metabolismo , Regulação da Expressão Gênica de Plantas , Organelas/fisiologia , Organelas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura Alta , Dinâmica Mitocondrial/fisiologia
2.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447134

RESUMO

Boron (B) is an essential micronutrient for plants, and its deficiency is a widespread nutritional disorder, particularly in high-demanding crops like Brassica napus. Over the past few decades, silicon (Si) has been shown to mitigate plant nutrient deficiencies of different macro- and micro-nutrients. However, the work on B and Si cross-talk has mostly been focused on the alleviation of B toxicity by Si application. In the present study, we investigated the effect of Si application on rapeseed plants grown hydroponically under long-term B deficiency (20 days at 0.1 µM B). In addition, a B-uptake labelling experiment was conducted, and the expression of the genes involved in B uptake were monitored between 2 and 15 days of B shortage. The results showed that Si significantly improved rapeseed plant growth under B deficiency by 34% and 49% in shoots and roots, respectively. It also increased the expression level of BnaNIP5;1 and BOR1;2c in both young leaves and roots. The uptake labelling experiment showed the remobilization of previously fixed 11B from old leaves to new tissues. This study provides additional evidence of the beneficial effects of Si under conditions lacking B by changing the expression of the BnaNIP5;1 gene and by remobilizing 11B to young tissues.

3.
Front Plant Sci ; 12: 681895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484256

RESUMO

Potassium (K) plays a crucial role in plant growth and development and is involved in different physiological and biochemical functions in plants. Brassica napus needs higher amount of nutrients like nitrogen (N), K, phosphorus (P), sulfur (S), and boron (B) than cereal crops. Previous studies in B. napus are mainly focused on the role of N and S or combined deficiencies. Hence, little is known about the response of B. napus to K deficiency. Here, a physiological, biochemical, and molecular analysis led us to investigate the response of hydroponically grown B. napus plants to K deficiency. The results showed that B. napus was highly sensitive to the lack of K. The lower uptake and translocation of K induced BnaHAK5 expression and significantly declined the growth of B. napus after 14 days of K starvation. The lower availability of K was associated with a decrease in the concentration of both S and N and modulated the genes involved in their uptake and transport. In addition, the lack of K induced an increase in Ca2+ and Mg2+ concentration which led partially to the accumulation of positive charge. Moreover, a decrease in the level of arginine as a positively charged amino acid was observed which was correlated with a substantial increase in the polyamine, putrescine (Put). Furthermore, K deficiency induced the expression of BnaNCED3 as a key gene in abscisic acid (ABA) biosynthetic pathway which was associated with an increase in the levels of ABA. Our findings provided a better understanding of the response of B. napus to K starvation and will be useful for considering the importance of K nutrition in this crop.

4.
Plants (Basel) ; 9(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333938

RESUMO

It has been long recognized that silicon (Si) plays important roles in plant productivity by improving mineral nutrition deficiencies. Despite the fact that Si is considered as 'quasi-essential', the positive effect of Si has mostly been described in resistance to biotic and tolerance to abiotic stresses. During the last decade, much effort has been aimed at linking the positive effects of Si under nutrient deficiency or heavy metal toxicity (HM). These studies highlight the positive effect of Si on biomass production, by maintaining photosynthetic machinery, decreasing transpiration rate and stomatal conductance, and regulating uptake and root to shoot translocation of nutrients as well as reducing oxidative stress. The mechanisms of these inputs and the processes driving the alterations in plant adaptation to nutritional stress are, however, largely unknown. In this review, we focus on the interaction of Si and macronutrient (MaN) deficiencies or micro-nutrient (MiN) deficiency, summarizing the current knowledge in numerous research fields that can improve our understanding of the mechanisms underpinning this cross-talk. To this end, we discuss the gap in Si nutrition and propose a working model to explain the responses of individual MaN or MiN disorders and their mutual responses to Si supplementation.

5.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456188

RESUMO

Being an essential macroelement, sulfur (S) is pivotal for plant growth and development, and acute deficiency in this element leads to yield penalty. Since the last decade, strong evidence has reported the regulatory function of silicon (Si) in mitigating plant nutrient deficiency due to its significant diverse benefits on plant growth. However, the role of Si application in alleviating the negative impact of S deficiency is still obscure. In the present study, an attempt was undertaken to decipher the role of Si application on the metabolism of rice plants under S deficiency. The results showed a distinct transcriptomic and metabolic regulation in rice plants treated with Si under both short and long-term S deficiencies. The expression of Si transporters OsLsi1 and OsLsi2 was reduced under long-term deficiency, and the decrease was more pronounced when Si was provided. The expression of OsLsi6, which is involved in xylem loading of Si to shoots, was decreased under short-term S stress and remained unchanged in response to long-term stress. Moreover, the expression of S transporters OsSULTR tended to decrease by Si supply under short-term S deficiency but not under prolonged S stress. Si supply also reduced the level of almost all the metabolites in shoots of S-deficient plants, while it increased their level in the roots. The levels of stress-responsive hormones ABA, SA, and JA-lle were also decreased in shoots by Si application. Overall, our finding reveals the regulatory role of Si in modulating the metabolic homeostasis under S-deficient condition.


Assuntos
Oryza/metabolismo , Silício/farmacologia , Estresse Fisiológico , Enxofre/deficiência , Regulação da Expressão Gênica de Plantas , Homeostase , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Xilema/genética , Xilema/metabolismo
6.
Int J Mol Sci ; 20(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382384

RESUMO

Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.


Assuntos
Beta vulgaris/fisiologia , Cálcio/metabolismo , Raízes de Plantas/fisiologia , Sacarose/metabolismo , Aclimatação , Beta vulgaris/crescimento & desenvolvimento , Biomassa , Secas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico
7.
Plant J ; 99(2): 302-315, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900791

RESUMO

During the life cycle of plants, seedlings are considered vulnerable because they are at the interface between the highly stress tolerant seed embryos and the established plant, and must develop rapidly, often in a challenging environment, with limited access to nutrients and light. Using a simple experimental system, whereby the seedling stage of Arabidopsis is considerably prolonged by nutrient starvation, we analysed the physiology and metabolism of seedlings maintained in such conditions up to 4 weeks. Although development was arrested at the cotyledon stage, there was no sign of senescence and seedlings remained viable for weeks, yielding normal plants after transplantation. Photosynthetic activity compensated for respiratory carbon losses, and energy dissipation by photorespiration and alternative oxidase appeared important. Photosynthates were essentially stored as organic acids, while the pool of free amino acids remained stable. Seedlings lost the capacity to store lipids in cytosolic lipid droplets, but developed large plastoglobuli. Arabidopsis seedlings arrested in their development because of mineral starvation displayed therefore a remarkable resilience, using their metabolic and physiological plasticity to maintain a steady state for weeks, allowing resumption of development when favourable conditions ensue.


Assuntos
Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Minerais/metabolismo , Modelos Biológicos , Plântula/metabolismo , Plântula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA