RESUMO
BACKGROUND: Health-related quality of life (HRQL) has become an important outcome parameter in cardiology. The MOS 36-ltem Short-Form Health Survey (SF-36) and the PROMIS-29 are two widely used generic measures providing composite HRQL scores. The domains of the SF-36, a well-established instrument utilized for several decades, can be aggregated to physical (PCS) and mental (MCS) component summary scores. Alternative scoring algorithms for correlated component scores (PCSc and MCSc) have also been suggested. The PROMIS-29 is a newer but increasingly used HRQL measure. Analogous to the SF-36, physical and mental health summary scores can be derived from PROMIS-29 domain scores, based on a correlated factor solution. So far, scores from the PROMIS-29 are not directly comparable to SF-36 results, complicating the aggregation of research findings. Thus, our aim was to provide algorithms to convert PROMIS-29 data to well-established SF-36 component summary scores. METHODS: Data from n = 662 participants of the Berlin Long-term Observation of Vascular Events (BeLOVE) study were used to estimate linear regression models with either PROMIS-29 domain scores or aggregated PROMIS-29 physical/mental health summary scores as predictors and SF-36 physical/mental component summary scores as outcomes. Data from a subsequent assessment point (n = 259) were used to evaluate the agreement between empirical and predicted SF-36 scores. RESULTS: PROMIS-29 domain scores as well as PROMIS-29 health summary scores showed high predictive value for PCS, PCSc, and MCSc (R2 ≥ 70%), and moderate predictive value for MCS (R2 = 57% and R2 = 40%, respectively). After applying the regression coefficients to new data, empirical and predicted SF-36 component summary scores were highly correlated (r > 0.8) for most models. Mean differences between empirical and predicted scores were negligible (|SMD|<0.1). CONCLUSIONS: This study provides easy-to-apply algorithms to convert PROMIS-29 data to well-established SF-36 physical and mental component summary scores in a cardiovascular population. Applied to new data, the agreement between empirical and predicted SF-36 scores was high. However, for SF-36 mental component summary scores, considerably better predictions were found under the correlated (MCSc) than under the original factor model (MCS). Additionally, as a pertinent byproduct, our study confirmed construct validity of the relatively new PROMIS-29 health summary scores in cardiology patients.
Assuntos
Doenças Cardiovasculares , Qualidade de Vida , Humanos , Masculino , Feminino , Doenças Cardiovasculares/psicologia , Pessoa de Meia-Idade , Idoso , Inquéritos e Questionários/normas , Algoritmos , Saúde Mental , Psicometria , Inquéritos EpidemiológicosRESUMO
Excessive stride variability is a characteristic feature of cerebellar ataxias, even in pre-ataxic or prodromal disease stages. This study explores the relation of variability of arm swing and trunk deflection in relationship to stride length and gait speed in previously described cohorts of cerebellar disease and healthy elderly: we examined 10 patients with spinocerebellar ataxia type 14 (SCA), 12 patients with essential tremor (ET), and 67 healthy elderly (HE). Using inertial sensors, recordings of gait performance were conducted at different subjective walking speeds to delineate gait parameters and respective coefficients of variability (CoV). Comparisons across cohorts and walking speed categories revealed slower stride velocities in SCA and ET patients compared to HE, which was paralleled by reduced arm swing range of motion (RoM), peak velocity, and increased CoV of stride length, while no group differences were found for trunk deflections and their variability. Larger arm swing RoM, peak velocity, and stride length were predicted by higher gait velocity in all cohorts. Lower gait velocity predicted higher CoV values of trunk sagittal and horizontal deflections, as well as arm swing and stride length in ET and SCA patients, but not in HE. These findings highlight the role of arm movements in ataxic gait and the impact of gait velocity on variability, which are essential for defining disease manifestation and disease-related changes in longitudinal observations.
Assuntos
Braço , Marcha , Velocidade de Caminhada , Humanos , Masculino , Marcha/fisiologia , Feminino , Idoso , Braço/fisiopatologia , Braço/fisiologia , Velocidade de Caminhada/fisiologia , Pessoa de Meia-Idade , Tronco/fisiopatologia , Tronco/fisiologia , Movimento/fisiologia , Doenças Cerebelares/fisiopatologia , Caminhada/fisiologia , Fenômenos Biomecânicos/fisiologia , Amplitude de Movimento Articular/fisiologia , Tremor Essencial/fisiopatologiaRESUMO
BACKGROUND: Instrumented assessment of motor symptoms has emerged as a promising extension to the clinical assessment of several movement disorders. The use of mobile and inexpensive technologies such as some markerless motion capture technologies is especially promising for large-scale application but has not transitioned into clinical routine to date. A crucial step on this path is to implement standardized, clinically applicable tools that identify and control for quality concerns. OBJECTIVE: The main goal of this study comprises the development of a systematic quality control (QC) procedure for data collected with markerless motion capture technology and its experimental implementation to identify specific quality concerns and thereby rate the usability of recordings. METHODS: We developed a post hoc QC pipeline that was evaluated using a large set of short motor task recordings of healthy controls (2010 recordings from 162 subjects) and people with multiple sclerosis (2682 recordings from 187 subjects). For each of these recordings, 2 raters independently applied the pipeline. They provided overall usability decisions and identified technical and performance-related quality concerns, which yielded respective proportions of their occurrence as a main result. RESULTS: The approach developed here has proven user-friendly and applicable on a large scale. Raters' decisions on recording usability were concordant in 71.5%-92.3% of cases, depending on the motor task. Furthermore, 39.6%-85.1% of recordings were concordantly rated as being of satisfactory quality whereas in 5.0%-26.3%, both raters agreed to discard the recording. CONCLUSIONS: We present a QC pipeline that seems feasible and useful for instant quality screening in the clinical setting. Results confirm the need of QC despite using standard test setups, testing protocols, and operator training for the employed system and by extension, for other task-based motor assessment technologies. Results of the QC process can be used to clean existing data sets, optimize quality assurance measures, as well as foster the development of automated QC approaches and therefore improve the overall reliability of kinematic data sets.
RESUMO
OBJECTIVES: Genetic variant classification is a challenge in rare adult-onset disorders as in SCA-PRKCG (prior spinocerebellar ataxia type 14) with mostly private conventional mutations and nonspecific phenotype. We here propose a refined approach for clinicogenetic diagnosis by including protein modeling and provide for confirmed SCA-PRKCG a comprehensive phenotype description from a German multi-center cohort, including standardized 3D MR imaging. METHODS: This cross-sectional study prospectively obtained neurological, neuropsychological, and brain imaging data in 33 PRKCG variant carriers. Protein modeling was added as a classification criterion in variants of uncertain significance (VUS). RESULTS: Our sample included 25 cases confirmed as SCA-PRKCG (14 variants, thereof seven novel variants) and eight carriers of variants assigned as VUS (four variants) or benign/likely benign (two variants). Phenotype in SCA-PRKCG included slowly progressive ataxia (onset at 4-50 years), preceded in some by early-onset nonprogressive symptoms. Ataxia was often combined with action myoclonus, dystonia, or mild cognitive-affective disturbance. Inspection of brain MRI revealed nonprogressive cerebellar atrophy. As a novel finding, a previously not described T2 hyperintense dentate nucleus was seen in all SCA-PRKCG cases but in none of the controls. INTERPRETATION: In this largest cohort to date, SCA-PRKCG was characterized as a slowly progressive cerebellar syndrome with some clinical and imaging features suggestive of a developmental disorder. The observed non-ataxia movement disorders and cognitive-affective disturbance may well be attributed to cerebellar pathology. Protein modeling emerged as a valuable diagnostic tool for variant classification and the newly described T2 hyperintense dentate sign could serve as a supportive diagnostic marker of SCA-PRKCG.
Assuntos
Proteína Quinase C/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Adulto , Idade de Início , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Masculino , Estudos ProspectivosRESUMO
Autosomal-dominant spinocerebellar ataxias (SCA) are neurodegenerative diseases characterized by progressive ataxia. Here, we report on neurometabolic alterations in spinocerebellar ataxia type 1 (SCA1; SCA-ATXN1) and 14 (SCA14; SCA-PRKCG) assessed by non-invasive 1H magnetic resonance spectroscopy. Three Tesla 1H magnetic resonance spectroscopy was performed in 17 SCA14, 14 SCA1 patients, and in 31 healthy volunteers. We assessed metabolites in the cerebellar vermis, right cerebellar hemisphere, pons, prefrontal, and motor cortex. Additionally, clinical characteristics were obtained for each patient to correlate them with metabolites. In SCA14, metabolic changes were restricted to the cerebellar vermis compared with widespread neurochemical alterations in SCA1. In SCA14, total N-acetylaspartate (tNAA) was reduced in the vermis by 34%. In SCA1, tNAA was reduced in the vermis (24%), cerebellar hemisphere (26%), and pons (25%). SCA14 patients showed 24% lower glutamate+glutamine (Glx) and 46% lower γ-aminobutyric acid (GABA) in the vermis, while SCA1 patients showed no alterations in Glx and GABA. SCA1 revealed a decrease of aspartate (Asp) in the vermis (62%) and an elevation in the prefrontal cortex (130%) as well as an elevation of myo-inositol (Ins) in the cerebellar hemisphere (51%) and pons (46%). No changes of Asp and Ins were detected in SCA14. Beyond, glucose (Glc) was increased in the vermis of both SCA14 (155%) and SCA1 (247%). 1H magnetic resonance spectroscopy revealed differing neurochemical profiles in SCA1 and SCA14 and confirmed metabolic changes that may be indicative for neuronal loss and dysfunctional energy metabolism. Therefore, 1H magnetic resonance spectroscopy represents a helpful tool for in-vivo tracking of disease-specific pathophysiology.
Assuntos
Encéfalo/metabolismo , Ataxias Espinocerebelares/metabolismo , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Spinocerebellar ataxia type 1 (SCA-ATXN1) is an inherited progressive ataxia disorder characterized by an adult-onset cerebellar syndrome combined with nonataxia signs. Retinal or optic nerve affection are not systematically described. OBJECTIVES: To describe a retinal phenotype and its functional relevance in SCA-ATXN1. METHODS: We applied optical coherence tomography (OCT) in 20 index cases with SCA-ATXN1 and 22 healthy controls (HCs), investigating qualitative changes and quantifying the peripapillary retinal nerve fiber layer (pRNFL) thickness and combined ganglion cell and inner plexiform layer (GCIP) volume as markers of optic atrophy and outer retinal layers as markers of maculopathy. Visual function was assessed by high- (HC-VA) and low-contrast visual acuity (LC-VA) and the Hardy-Rand-Rittler pseudoisochromatic test for color vision. RESULTS: Five patients (25%) showed distinct maculopathies in the ellipsoid zone (EZ). Furthermore, pRNFL (P < 0.001) and GCIP (P = 0.002) were reduced in patients (pRNFL, 80.86 ± 9.49 µm; GCIP, 1.84 ± 0.16 mm3) compared with HCs (pRNFL, 97.02 ± 8.34 µm; GCIP, 1.98 ± 0.12 mm3). Outer macular layers were similar between groups, but reduced in patients with maculopathies. HC-VA (P = 0.002) and LC-VA (P < 0.001) were reduced in patients (HC-VA [logMAR]: 0.01 ± 010; LC-VA [logMAR]: 0.44 ± 0.16) compared with HCs (HC-VA [logMAR]: -0.12 ± 0.08; LC-VA [logMAR]: 0.25 ± 0.05). Color vision was abnormal in 2 patients with maculopathies. CONCLUSIONS: A distinct maculopathy, termed EZ disruption, as well as optic atrophy add to the known nonataxia features in SCA-ATXN1. Whereas optic atrophy may be understood as part of a widespread neurodegeneration, EZ disruption may be explained by effects of ataxin-1 gene or protein on photoreceptors. Our findings extend the spectrum of nonataxia signs in SCA-ATXN1 with potential relevance for diagnosis and monitoring.
RESUMO
BACKGROUND: While alternating current stimulation (ACS) is gaining relevance as a tool in research and approaching clinical applications, its mechanisms of action remain unclear. A review by Schutter and colleagues argues for a retinal origin of transcranial ACS' neuromodulatory effects. Interestingly, there is an alternative application form of ACS specifically targeting α-oscillations in the visual cortex via periorbital electrodes (retinofugal alternating current stimulation, rACS). To further compare these two methods and investigate retinal effects of ACS, we first aim to establish the safety and tolerability of rACS. OBJECTIVE: The goal of our research was to evaluate the safety of rACS via finite-element modeling, theoretical safety limits and subjective report. METHODS: 20 healthy subjects were stimulated with rACS as well as photic stimulation and reported adverse events following stimulation. We analyzed stimulation parameters at electrode level as well as distributed metric estimates from an ultra-high spatial resolution magnetic resonance imaging (MRI)-derived finite element human head model and compared them to existing safety limits. RESULTS: Topographical modeling revealed the highest current densities in the anterior visual pathway, particularly retina and optic nerve. Stimulation parameters and finite element modeling estimates of rACS were found to be well below existing safety limits. No serious adverse events occurred. CONCLUSION: Our findings are in line with existing safety guidelines for retinal and neural damage and establish the tolerability and feasibility of rACS. In comparison to tACS, retinofugal stimulation of the visual cortex provides an anatomically circumscribed model to systematically study the mechanisms of action of ACS.
RESUMO
Background and Objective: Transcranial random noise stimulation (tRNS) is an emerging non-invasive brain stimulation technique to modulate brain function, with previous studies highlighting its considerable benefits in therapeutic stimulation of the motor system. However, high variability of results and bidirectional task-dependent effects limit more widespread clinical application. Task dependency largely results from a lack of understanding of the interaction between externally applied tRNS and the endogenous state of neural activity during stimulation. Hence, the aim of this study was to investigate the task dependency of tRNS-induced neuromodulation in the motor system using a finger-tapping task (FT) versus a go/no-go task (GNG). We hypothesized that the tasks would modulate tRNS' effects on corticospinal excitability (CSE) and task performance in opposite directions. Methods: Thirty healthy subjects received 10 min of tRNS of the dominant primary motor cortex in a double-blind, sham-controlled study design. tRNS was applied during two well-established tasks tied to diverging brain states. Accordingly, participants were randomly assigned to two equally-sized groups: the first group performed a simple motor training task (FT task), known primarily to increase CSE, while the second group performed an inhibitory control task (go/no-go task) associated with inhibition of CSE. To establish task-dependent effects of tRNS, CSE was evaluated prior to- and after stimulation with navigated transcranial magnetic stimulation. Results: In an 'activating' motor task, tRNS during FT significantly facilitated CSE. FT task performance improvements, shown by training-related reductions in intertap intervals and increased number of finger taps, were similar for both tRNS and sham stimulation. In an 'inhibitory' motor task, tRNS during GNG left CSE unchanged while inhibitory control was enhanced as shown by slowed reaction times and enhanced task accuracy during and after stimulation. Conclusion: We provide evidence that tRNS-induced neuromodulatory effects are task-dependent and that resulting enhancements are specific to the underlying task-dependent brain state. While mechanisms underlying this effect require further investigation, these findings highlight the potential of tRNS in enhancing task-dependent brain states to modulate human behavior.
RESUMO
Alternating current stimulation (ACS) is an established means to manipulate intrinsic cortical oscillations. While working towards clinical impact, ACS mechanisms of action remain unclear. For ACS's well-documented influence on occipital alpha, hypotheses include neuronal entrainment as well as rebound phenomena. As a retinal origin is also discussed, we employed a novel form of ACS with the advantage that it specifically targets occipital alpha-oscillations via retinofugal pathways retinofugal ACS (rACS). We aimed to confirm alpha-enhancement outlasting the duration of stimulation with 10 Hz rACS. To distinguish entrainment from rebound effects, we investigated the correlation between alpha peak frequency change and alpha-enhancement strength. We quantified the alpha band power before and after 10 Hz rACS in 15 healthy subjects. Alpha power enhancement and alpha peak frequency change were assessed over the occipital electrodes and compared to sham stimulation. RACS significantly enhanced occipital alpha power in comparison to sham stimulation (p < 0.05). Alpha peak frequency changed by a mean 0.02 Hz (± 0.04). A greater change in alpha peak frequency did not correlate with greater effects on alpha power. Our findings show an alpha-enhancement consistent with studies conducted for transcranial ACS (tACS) and contribute evidence for a retinal involvement in tACS effects on occipital alpha. Furthermore, the lack of correlation between alpha peak frequency change and alpha-enhancement strength provides an argument against entrainment effects and in favor of a rebound phenomenon.
RESUMO
Background. The lack of objective disease markers is a major cause of misdiagnosis and nonstandardized approaches in delirium. Recent studies conducted in well-selected patients and confined study environments suggest that quantitative electroencephalography (qEEG) can provide such markers. We hypothesize that qEEG helps remedy diagnostic uncertainty not only in well-defined study cohorts but also in a heterogeneous hospital population. Methods. In this retrospective case-control study, EEG power spectra of delirious patients and age-/gender-matched controls (n = 31 and n = 345, respectively) were fitted in a linear model to test their performance as binary classifiers. We subsequently evaluated the diagnostic performance of the best classifiers in control samples with normal EEGs (n = 534) and real-world samples including pathologic findings (n = 4294). Test reliability was estimated through split-half analyses. Results. We found that the combination of spectral power at F3-P4 at 2 Hz (area under the curve [AUC] = .994) and C3-O1 at 19 Hz (AUC = .993) provided a sensitivity of 100% and a specificity of 99% to identify delirious patients among normal controls. These classifiers also yielded a false positive rate as low as 5% and increased the pretest probability of being delirious by 57% in an unselected real-world sample. Split-half reliabilities were .98 and .99, respectively. Conclusion. This retrospective study yielded preliminary evidence that qEEG provides excellent diagnostic performance to identify delirious patients even outside confined study environments. It furthermore revealed reduced beta power as a novel specific finding in delirium and that a normal EEG excludes delirium. Prospective studies including parameters of pretest probability and delirium severity are required to elaborate on these promising findings.
Assuntos
Encéfalo/fisiopatologia , Delírio/diagnóstico , Delírio/fisiopatologia , Eletroencefalografia/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Ondas Encefálicas , Estudos de Casos e Controles , Interpretação Estatística de Dados , Delírio/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade , Processamento de Sinais Assistido por ComputadorRESUMO
To evaluate task induced motor fatigue in a well-established finger tapping task, we analyzed tapping parameters and included the time course of measures of force. We hypothesized that a decline in tapping force would reflect task induced motor fatigue, defined by a lengthening of inter-tap intervals (ITI). A secondary aim was to investigate the reliability of tapping data acquisition with the force sensor. Results show that, as expected, tapping speed decreased linearly over time, due to both an increase of ITI and tap duration. In contrast, tapping force increased non-linearly over time and was uncorrelated to changes in tapping speed. Force data could serve as a measure to characterize task induced motor fatigue. Force sensors can assess a decline in tapping speed as well as an independent increase of tapping force. We argue that the increase of force reflects central compensation, i.e. perception of fatigue, due to an increase in task effort and difficulty.
Assuntos
Dedos/fisiologia , Fadiga Muscular/fisiologia , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Adulto JovemRESUMO
UNLABELLED: Brain stimulation is used to induce transient alterations of neural excitability to probe or modify brain function. For example, single-pulse transcranial magnetic stimulation (TMS) of the motor cortex can probe corticospinal excitability (CSE). Yet, CSE measurements are confounded by a high level of variability. This variability is due to physical and physiological factors. Navigated TMS (nTMS) systems can record physical parameters of the TMS coil (tilt, location, and orientation) and some also estimate intracortical electric fields (EFs) on a trial-by-trial basis. Thus, these parameters can be partitioned with stepwise regression. PURPOSE: The primary objective was to dissociate variance due to physical parameters from variance due to physiological factors for CSE estimates. The secondary objective was to establish the predictive validity of EF estimates from spherical head models. HYPOTHESIS: Variability of physical parameters of TMS predicts CSE variability. METHODS: Event-related measurements of physical parameters were analyzed in stepwise regression. Partitioned parameter variance and predictive validity were compared for a target-controlled and a nontarget-controlled experiment. A control experiment (preinnervation) confirmed the validity of linear data analysis. A bias-free model quantified the effect of divergence from optimum. RESULTS: Partitioning physical parameter variance reduces CSE variability. EF estimates from spherical models were valid. Post hoc analyses showed that even small physical fluctuations can confound the statistical comparison of CSE measurements. CONCLUSIONS: It is necessary to partition physical and physiological variance in TMS studies to make confounded data interpretable. The spatial resolution of nTMS is <5 mm and the EF-estimates are valid.
Assuntos
Mapeamento Encefálico , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Eletromiografia , Feminino , Lateralidade Funcional , Humanos , Masculino , Análise de RegressãoRESUMO
INTRODUCTION: Repetitive transorbital alternating current stimulation (rtACS) can improve visual deficits in patients with optic nerve damage. Recent retrospective results suggest that rtACS enhances oscillatory brain activity. The exact mechanisms of rtACS are unclear and little is known about possibly frequency-specific neural-plastic mechanisms. An association between bandwidth-confined neural-entrainment and vision recovery maximization could offer a novel therapeutic option for patients with optic neuropathy. OBJECTIVES: The goal of this prospective open-label study was to investigate if the enhancement of rhythmic brain activity over 10 days of consecutive rtACS stimulation is associated with visual field recovery. The secondary goal was to investigate neurophysiological mechanisms related to frequency dependent adaptive plasticity. METHODS: 18 Patients with visual field impairments resulting from pre-chiasmatic partial optic nerve damage received rtACS on 10 consecutive days. Daily, subject-specific treatment parameters (<500 µA, 9-37 Hz, 25-40 min/day) were defined and EEG-spectra collected prior to and after rtACS. Visual field data was collected at day 1 and 10. The change of spectral-power in classic bandwidths were investigated and correlated with visual field deficit recovery. RESULTS: After 10 days of rtACS alpha-power over bilateral occipital electrodes was significantly larger than at baseline (F(Time x alpha-power)p < 0.01). This effect was progressive over subsequent days of stimulation (cubic-fit, R(2) 0.70, RMSE 0.008). Perimetric results improved significantly, but they were not associated with changes in alpha-synchronization. DISCUSSION: rtACS can induce cumulative bandwidth-confined changes in brain rhythms over multiple sessions. These findings are in line with the notion of brain-state dependent [1] and bandwidth-confined entrainment [2] as well as rtACS facilitated visual recovery [3].