Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Radiother Oncol ; 194: 110184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453055

RESUMO

BACKGROUND AND PURPOSE: Safe reirradiation relies on assessment of cumulative doses to organs at risk (OARs) across multiple treatments. Different clinical pathways can result in inconsistent estimates. Here, we quantified the consistency of cumulative dose to OARs across multi-centre clinical pathways. MATERIAL AND METHODS: We provided DICOM planning CT, structures and doses for two reirradiation cases: head & neck (HN) and lung. Participants followed their standard pathway to assess the cumulative physical and EQD2 doses (with provided α/ß values), and submitted DVH metrics and a description of their pathways. Participants could also submit physical dose distributions from Course 1 mapped onto the CT of Course 2 using their best available tools. To assess isolated impact of image registrations, a single observer accumulated each submitted spatially mapped physical dose for every participating centre. RESULTS: Cumulative dose assessment was performed by 24 participants. Pathways included rigid (n = 15), or deformable (n = 5) image registration-based 3D dose summation, visual inspection of isodose line contours (n = 1), or summation of dose metrics extracted from each course (n = 3). Largest variations were observed in near-maximum cumulative doses (25.4 - 41.8 Gy for HN, 2.4 - 33.8 Gy for lung OARs), with lower variations in volume/dose metrics to large organs. A standardised process involving spatial mapping of the first course dose to the second course CT followed by summation improved consistency for most near-maximum dose metrics in both cases. CONCLUSION: Large variations highlight the uncertainty in reporting cumulative doses in reirradiation scenarios, with implications for outcome analysis and understanding of published doses. Using a standardised workflow potentially including spatially mapped doses improves consistency in determination of accumulated dose in reirradiation scenarios.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reirradiação , Humanos , Reirradiação/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X
2.
Acta Oncol ; 62(10): 1222-1229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683054

RESUMO

BACKGROUND: Patients with stage II seminoma have traditionally been treated with photons to the retroperitoneal and iliac space, which leads to a substantial dose bath to abdominal and pelvic organs at risk (OAR). As these patients are young and with excellent prognosis, reducing dose to OAR and thereby the risk of secondary cancer is of utmost importance. We compared IMPT to opposing IMRT fields and VMAT, assessing dose to OAR and both overall and organ-specific secondary cancer risk. MATERIAL AND METHODS: A comparative treatment planning study was conducted on planning CT-scans from ten patients with stage II seminoma, treated with photons to a 'dog-leg' field with doses ranging from 20 to 25 Gy and a 10 Gy sequential boost to the metastatic lymph node(s). Photon plans were either 3-4 field IMRT (Eclipse) or 1-2 arc VMAT (Pinnacle). Proton plans used robust (5 mm; 3.5%) IMPT (Eclipse), multi field optimization with 3 posterior fields supplemented by 2 anterior fields at the level of the iliac vessels. Thirty plans were generated. Mean doses to OARs were compared for IMRT vs IMPT and VMAT vs IMPT. The risk of secondary cancer was calculated according to the model described by Schneider, using excess absolute risk (EAR, per 10,000 persons per year) for body outline, stomach, duodenum, pancreas, bowel, bladder and spinal cord. RESULTS: Mean doses to all OARs were significantly lower with IMPT except similar kidney (IMRT) and spinal cord (VMAT) doses. The relative EAR for body outline was 0.59 for IMPT/IMRT (p < .05) and 0.33 for IMPT/VMAT (p < .05). Organ specific secondary cancer risk was also lower for IMPT except for pancreas and duodenum. CONCLUSION: Proton therapy reduced radiation dose to OAR compared to both IMRT and VMAT plans, and potentially reduce the risk of secondary cancer both overall and for most OAR.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Seminoma , Neoplasias Testiculares , Humanos , Masculino , Órgãos em Risco , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos , Seminoma/radioterapia , Neoplasias Testiculares/radioterapia
3.
Acta Oncol ; 62(11): 1455-1460, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37773941

RESUMO

BACKGROUND: Inter-fractional anatomical changes challenge robust delivery of whole-pelvic proton therapy for high-risk prostate cancer. Pre-treatment robust evaluation (PRE) takes uncertainties in isocenter shifts and distal beam edge in treatment plans into account. Using weekly control computed tomography scans (cCTs), the aim of this study was to evaluate the PRE strategy by comparing to an off-line during-treatment robust evaluation (DRE) while also assessing plan robustness with respect to protocol planning constraints. MATERIAL AND METHODS: Treatment plans and cCTs from ten patients included in the pilot phase of the PROstate PROTON Trial 1 were analysed. Treatment planning followed protocol guidelines with 78 Gy to the primary clinical target volume (CTVp) and 56 Gy to the elective target (CTVe) in 39 fractions. Recalculations of the treatment plans were performed for a total of 64 cCTs and dose/volume measures corresponding to clinical constraints were evaluated for this DRE against the simulated scenario interval from the PRE. RESULTS: Of the 64 cCTs, 59 showed DRE CTVp measures within the robustness range from the PRE; this was also the case for 39 of the cCTs for the CTVe measures. However, DRE CTVe coverage was still within constraints for 57 of the 64 cCTs. DRE dose/volume measures for CTVp fulfilled target coverage constraints in 59 of 64 cCTs. All DRE measures for the rectum, bladder, and bowel were inside the PRE range in 63, 39, and 31 cCTs, respectively. CONCLUSION: The PRE strategy predicted the DRE scenarios for CTVp and rectum. CTVe, bladder, and bowel showed more complex anatomical variations than simulated by the PRE isocenter shift. Both original and recalculated nominal treatment plans showed robust treatment delivery in terms of target coverage.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Masculino , Humanos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco , Dosagem Radioterapêutica
4.
Clin Transl Radiat Oncol ; 41: 100632, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441541

RESUMO

The Danish Prostate Cancer Group is launching the randomized trial, PROstate PROTON Trial 1 (NCT05350475), that compares photons and protons to the prostate and pelvic lymph nodes in treatment of high-risk prostate cancer. The aim of the work described in this paper was, in preparation of this trial, to establish a strategy for conventionally fractionated proton therapy of prostate and elective pelvic lymph nodes that is feasible and robust. Proton treatments are image-guided based on gold fiducial markers and on-board imaging systems in line with current practice. Our established proton beam configuration consists of four coplanar fields; two posterior oblique fields and two lateral oblique fields, chosen to minimize range uncertainties associated with penetrating a varying amount of material from both treatment couch and patient body. Proton plans are robustly optimized to ensure target coverage while keeping normal tissue doses as low as is reasonably achievable throughout the course of treatment. Specific focus is on dose to the bowel as a reduction in gastrointestinal toxicity is the primary endpoint of the trial. Strategies have been established using previously treated patients and will be further investigated and evaluated through the ongoing pilot phase of the trial.

5.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35108695

RESUMO

Introduction.Internal organ motion and deformations may cause dose degradations in proton therapy (PT) that are challenging to resolve using conventional image-guidance strategies. This study aimed to investigate the potential ofrange guidanceusing water-equivalent path length (WEPL) calculations to detect dose degradations occurring in PT.Materials and methods. Proton ranges were estimated using WEPL calculations. Field-specific isodose surfaces in the planning CT (pCT), from robustly optimised five-field proton plans (opposing lateral and three posterior/posterior oblique beams) for locally advanced prostate cancer patients, were used as starting points. WEPLs to each point on the field-specific isodoses in the pCT were calculated. The corresponding range for each point was found in the repeat CTs (rCTs). The spatial agreement between the resulting surfaces in the rCTs (hereafter referred to as iso-WEPLs) and the isodoses re-calculated in rCTs was evaluated for different dose levels and Hausdorff thresholds (2-5 mm). Finally, the sensitivity and specificity of detecting target dose degradation (V95% < 95%) using spatial agreement measures between the iso-WEPLs and isodoses in the pCT was evaluated.Results. The spatial agreement between the iso-WEPLs and isodoses in the rCTs depended on the Hausdorff threshold. The agreement was 65%-88% for a 2 mm threshold, 83%-96% for 3 mm, 90%-99% for 4 mm, and 94%-99% for 5 mm, across all fields and isodose levels. Minor differences were observed between the different isodose levels investigated. Target dose degradations were detected with 82%-100% sensitivity and 75%-80% specificity using a 2 mm Hausdorff threshold for the lateral fields.Conclusion. Iso-WEPLs were comparable to isodoses re-calculated in the rCTs. The proposed strategy could detect target dose degradations occurring in the rCTs and could be an alternative to a fully-fledged dose re-calculation to detect anatomical variations severely influencing the proton range.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Humanos , Masculino , Movimentos dos Órgãos , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Acta Oncol ; 60(5): 598-604, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33646069

RESUMO

BACKGROUND: Proton therapy (PT) is sensitive towards anatomical changes that may occur during a treatment course. The aim of this study was to investigate if anatomically robust PT (ARPT) plans incorporating patient-specific target motion improved target coverage while still sparing normal tissues, when applied on locally advanced prostate cancer patients where pelvic irradiation is indicated. MATERIAL AND METHODS: A planning computed tomography (CT) scan used for dose calculation and two additional CTs (acquired on different days) were used to make patient-specific targets for the ARPT plans on the eight included patients. The plans were compared to a conventional robust PT plan and a volumetric modulated arc therapy (VMAT) photon plan, which were derived from the planning CT (pCT). Worst-case robust optimisation was used for all proton plans with a setup uncertainty of 5 mm and a range uncertainty of 3.5%. Target coverage (V95% and D95%) and normal tissue doses (V5-75 Gy) were evaluated on 6-8 rCTs per patient. RESULTS: The ARPT plans improved the prostate target coverage for the most challenging patient compared to conventional robust PT plans (20% point increase for V95% and 31 Gy increase for D95%). Across the whole cohort the estimated mean value for V95% was 97% for the ARPT plans and 95% for the conventional robust PT plans. The ARPT plans had a slight, statistically insignificant increase in normal tissue doses compared to the conventional robust proton plans. Compared to VMAT, the ARPT plans significantly reduced the normal tissue doses in the low-to-intermediate dose range. CONCLUSIONS: While both proton plans reduced the low-to-intermediate normal tissue doses compared to VMAT, ARPT plans improved the target coverage for the most challenging patient without significantly increasing the normal tissue doses compared to conventional robust PT plans.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Órgãos em Risco , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
7.
Acta Oncol ; 56(10): 1277-1285, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28447539

RESUMO

PURPOSE/OBJECTIVE: Chemo-radiotherapy is an established primary curative treatment for anal cancer, but clinically equal rationale for different target doses exists. If joint preferences (physician and patient) are used to determine acceptable tradeoffs in radiotherapy treatment planning, multiple dose plans must be simultaneously explored. We quantified the degree to which different toxicity priorities might be incorporated into treatment plan selection, to elucidate the feasible decision space for shared decision making in anal cancer radiotherapy. MATERIAL AND METHODS: Retrospective plans were generated for 22 anal cancer patients. Multi-criteria optimization handles dynamically changing priorities between clinical objectives while meeting fixed clinical constraints. Four unique dose distributions were designed to represent a wide span of clinically relevant objectives: high-dose preference (60.2 Gy tumor boost and 50.4 Gy to elective nodes with physician-defined order of priorities), low-dose preference (53.75 Gy tumor boost, 45 Gy to elective nodes, physician-defined priorities), bowel sparing preference (lower dose levels and priority for bowel avoidance) and bladder sparing preference (lower dose levels and priority for bladder avoidance). RESULTS: Plans satisfied constraints for target coverage. A senior oncologist approved a random subset of plans for quality assurance. Compared to a high-dose preference, bowel sparing was clinically meaningful at the lower prescribed dose [median change in V45Gy: 234 cm3; inter-quartile range (66; 247); p < .01] and for a bowel sparing preference [median change in V45Gy: 281 cm3; (73; 488); p < .01]. Compared to a high-dose preference, bladder sparing was clinically meaningful at the lower prescribed dose [median change in V35Gy: 13.7%-points; (0.3; 30.6); p < .01] and for a bladder sparing preference [median change in V35Gy: 30.3%-points; (12.4; 43.1); p < .01]. CONCLUSIONS: There is decision space available in anal cancer radiotherapy to incorporate preferences, although tradeoffs are highly patient-dependent. This study demonstrates that preference-informed dose planning is feasible for clinical studies utilizing shared decision making.


Assuntos
Neoplasias do Ânus/radioterapia , Tomada de Decisões , Estudos de Viabilidade , Humanos , Preferência do Paciente , Dosagem Radioterapêutica
8.
Acta Oncol ; 48(2): 209-15, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18803058

RESUMO

INTRODUCTION: The objective of this study was to examine the accuracy of the Anisotropic Analytical Algorithm (AAA). A variety of different field configurations in homogeneous and in inhomogeneous media (lung geometry) was tested for the AAA algorithm. It was also tested against the present Pencil Beam Convolution (PBC) algorithm. MATERIALS AND METHODS: Two dimensional (2D) dose distributions were measured for a variety of different field configurations in solid water with a 2D array of ion chambers. The dose distributions of patient specific treatment plans in selected transversal slices were measured in a Thorax lung phantom with Gafchromic dosimetry films. A Farmer ion chamber was used to check point doses in the Thorax phantom. The 2D dose distributions were evaluated with a gamma criterion of 3% in dose and 3 mm distance to agreement (DTA) for the 2D array measurements and for the film measurements. RESULTS: For AAA, all fields tested in homogeneous media fulfilled the criterion, except asymmetric fields with wedges and intensity modulated plans where deviations of 5 and 4%, respectively, were seen. Overall, the measured and calculated 2D dose distributions for AAA in the Thorax phantom showed good agreement -- both for 6 and 15 MV photons. More than 80% of the points in the high dose regions met the gamma criterion, though it failed at low doses and at gradients. For the PBC algorithm only 30-70% of the points met the gamma criterion. CONCLUSION: The AAA algorithm has been shown to be superior to the PBC algorithm in heterogeneous media, especially for 15 MV. For most treatment plans the deviations in the lung and the mediastinum regions are below 3%. However, the algorithm may underestimate the dose to the spinal cord by up to 7%.


Assuntos
Algoritmos , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Anisotropia , Simulação por Computador , Raios gama , Humanos , Imagens de Fantasmas , Radiometria/métodos , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA