Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Manage ; 61(6): 1031-1047, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29560524

RESUMO

Life cycle assessment (LCA) has become a common methodology to analyze environmental impacts of forestry systems. Although LCA has been widely applied to forestry since the 90s, the LCAs are still often based on generic Life Cycle Inventory (LCI). With the purpose of improving LCA practices in the forestry sector, we developed a European Life Cycle Inventory of Forestry Operations (EFO-LCI) and analyzed the available information to check if within the European forestry sector national differences really exist. We classified the European forests on the basis of "Forest Units" (combinations of tree species and silvicultural practices). For each Forest Unit, we constructed the LCI of their forest management practices on the basis of a questionnaire filled out by national silvicultural experts. We analyzed the data reported to evaluate how they vary over Europe and how they affect LCA results and made freely available the inventory data collected for future use. The study shows important variability in rotation length, type of regeneration, amount and assortments of wood products harvested, and machinery used due to the differences in management practices. The existing variability on these activities sensibly affect LCA results of forestry practices and raw wood production. Although it is practically unfeasible to collect site-specific data for all the LCAs involving forest-based products, the use of less generic LCI data of forestry practice is desirable to improve the reliability of the studies. With the release of EFO-LCI we made a step toward the construction of regionalized LCI for the European forestry sector.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores/crescimento & desenvolvimento , Madeira/economia , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Bases de Dados Factuais , Europa (Continente) , Agricultura Florestal/economia , Agricultura Florestal/métodos , Reprodutibilidade dos Testes , Fatores de Tempo
2.
Sci Rep ; 8(1): 3299, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459753

RESUMO

Climate impacts of forest bioenergy result from a multitude of warming and cooling effects and vary by location and technology. While past bioenergy studies have analysed a limited number of climate-altering pollutants and activities, no studies have jointly addressed supply chain greenhouse gas emissions, biogenic CO2 fluxes, aerosols and albedo changes at high spatial and process detail. Here, we present a national-level climate impact analysis of stationary bioenergy systems in Norway based on wood-burning stoves and wood biomass-based district heating. We find that cooling aerosols and albedo offset 60-70% of total warming, leaving a net warming of 340 or 69 kg CO2e MWh-1 for stoves or district heating, respectively. Large variations are observed over locations for albedo, and over technology alternatives for aerosols. By demonstrating both notable magnitudes and complexities of different climate warming and cooling effects of forest bioenergy in Norway, our study emphasizes the need to consider multiple forcing agents in climate impact analysis of forest bioenergy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA