RESUMO
PURPOSE: The purpose of this study was to assess, using an anthropomorphic digital phantom, the accuracy of algorithms in registering precontrast and contrast-enhanced computed tomography (CT) chest images for generation of iodine maps of the pulmonary parenchyma via temporal subtraction. MATERIALS AND METHODS: The XCAT phantom, with enhanced airway and pulmonary vessel structures, was used to simulate precontrast and contrast-enhanced chest images at various inspiration levels and added CT simulation for realistic system noise. Differences in diaphragm position were varied between 0 and 20 mm, with the maximum chosen to exceed the 95th percentile found in a dataset of 100 clinical subtraction CTs. In addition, the influence of whole body movement, degree of iodine enhancement, beam hardening artifacts, presence of nodules and perfusion defects in the pulmonary parenchyma, and variation in noise on the registration were also investigated. Registration was performed using three lung registration algorithms - a commercial (algorithm A) and a prototype (algorithm B) version from Canon Medical Systems and an algorithm from the MEVIS Fraunhofer institute (algorithm C). For each algorithm, we calculated the voxel-by-voxel difference between the true deformation and the algorithm-estimated deformation in the lungs. RESULTS: The median absolute residual error for all three algorithms was smaller than the voxel size (1.0 × 1.0 × 1.0 mm3 ) for up to an 8 mm diaphragm difference, which is the average difference in diaphragm levels found clinically, and increased with increasing difference in diaphragm position. At 20 mm diaphragm displacement, the median absolute residual error after registration was 0.85 mm (interquartile range, 0.51-1.47 mm) for algorithm A, 0.82 mm (0.50-1.40 mm) for algorithm B, and 0.91 mm (0.54-1.52 mm) for algorithm C. The largest errors were seen in the paracardiac regions and close to the diaphragm. The impact of all other evaluated conditions on the residual error varied, resulting in an increase in the median residual error lower than 0.1 mm for all algorithms, except in the case of whole body displacements for algorithm B, and with increased noise for algorithm C. CONCLUSION: Motion correction software can compensate for respiratory and cardiac motion with a median residual error below 1 mm, which was smaller than the voxel size, with small differences among the tested registration algorithms for different conditions. Perfusion defects above 50 mm will be visible with the commercially available subtraction CT software, even in poorly registered areas, where the median residual error in that area was 7.7 mm.
Assuntos
Algoritmos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Técnica de Subtração/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Artefatos , Humanos , Pulmão/fisiologia , Movimento , Razão Sinal-RuídoRESUMO
PURPOSE: Annotation of meaningful landmark ground truth on DCE-MRI is difficult and laborious. Motion correction methods applied to DCE-MRI of the liver are thus mostly evaluated using qualitative or indirect measures. We propose a novel landmark annotation scheme that facilitates the generation of landmark ground truth on larger clinical datasets. METHODS: In our annotation scheme, landmarks are equally distributed over all time points of all available dataset cases and annotated by multiple observers on a per-pair basis. The scheme is used to annotate 26 DCE-MRI of the liver. A subset of the ground truth is used to optimize parameters of a deformable motion correction. Several variants of the motion correction are evaluated on the remaining cases with respect to distances of corresponding landmarks after registration, deformation field properties, and qualitative measures. RESULTS: A landmark ground truth on 26 cases could be generated in under 12 h per observer with a mean inter-observer distance below the mean voxel diagonal. Furthermore, the landmarks are spatially well distributed within the liver. Parameter optimization significantly improves the performance of the motion correction, and landmark distance after registration is 2 mm. Qualitative evaluation of the motion correction reflects the quantitative results. CONCLUSIONS: The annotation scheme makes a landmark-based evaluation of motion corrections for hepatic DCE-MRI practically feasible for larger clinical datasets. The comparably large number of cases enables both optimization and evaluation of motion correction methods.
Assuntos
Algoritmos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , HumanosRESUMO
We present a novel algorithm for the registration of pulmonary CT scans. Our method is designed for large respiratory motion by integrating sparse keypoint correspondences into a dense continuous optimization framework. The detection of keypoint correspondences enables robustness against large deformations by jointly optimizing over a large number of potential discrete displacements, whereas the dense continuous registration achieves subvoxel alignment with smooth transformations. Both steps are driven by the same normalized gradient fields data term. We employ curvature regularization and a volume change control mechanism to prevent foldings of the deformation grid and restrict the determinant of the Jacobian to physiologically meaningful values. Keypoint correspondences are integrated into the dense registration by a quadratic penalty with adaptively determined weight. Using a parallel matrix-free derivative calculation scheme, a runtime of about 5 min was realized on a standard PC. The proposed algorithm ranks first in the EMPIRE10 challenge on pulmonary image registration. Moreover, it achieves an average landmark distance of 0.82 mm on the DIR-Lab COPD database, thereby improving upon the state of the art in accuracy by 15%. Our algorithm is the first to reach the inter-observer variability in landmark annotation on this dataset.
Assuntos
Pulmão , Algoritmos , Humanos , Movimento (Física) , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: Rating both a lung segmentation algorithm and a deformable image registration (DIR) algorithm for subsequent lung computed tomography (CT) images by different evaluation techniques. Furthermore, investigating the relative performance and the correlation of the different evaluation techniques to address their potential value in a clinical setting. METHODS: Two to seven subsequent CT images (69 in total) of 15 lung cancer patients were acquired prior, during, and after radiochemotherapy. Automated lung segmentations were compared to manually adapted contours. DIR between the first and all following CT images was performed with a fast algorithm specialized for lung tissue registration, requiring the lung segmentation as input. DIR results were evaluated based on landmark distances, lung contour metrics, and vector field inconsistencies in different subvolumes defined by eroding the lung contour. Correlations between the results from the three methods were evaluated. RESULTS: Automated lung contour segmentation was satisfactory in 18 cases (26%), failed in 6 cases (9%), and required manual correction in 45 cases (66%). Initial and corrected contours had large overlap but showed strong local deviations. Landmark-based DIR evaluation revealed high accuracy compared to CT resolution with an average error of 2.9 mm. Contour metrics of deformed contours were largely satisfactory. The median vector length of inconsistency vector fields was 0.9 mm in the lung volume and slightly smaller for the eroded volumes. There was no clear correlation between the three evaluation approaches. CONCLUSIONS: Automatic lung segmentation remains challenging but can assist the manual delineation process. Proven by three techniques, the inspected DIR algorithm delivers reliable results for the lung CT data sets acquired at different time points. Clinical application of DIR demands a fast DIR evaluation to identify unacceptable results, for instance, by combining different automated DIR evaluation methods.